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THE RECEPTIVITY OF BOUNDARY LAYERS ON BLUNT BODIES 

TO OSCILLATIONS IN THE FREE STREAM 

BY 

Chester E. Grosch* 

INTRODUCTION 

The prediction of the position of transition on a body is one of the 

most.difficult problems in fluid dynamics. Linear stability theory with the 

"en" criterion (see Mack, 1977, for an extended discussion) is probably 

the most widely used method of predicting transition. The major weakness of 

this method is that it employes a relative measure of flow instability; the 

growth of some measure of the disturbance size, whether amplitude, energy, 

or whatever, relative to an unknown initial size of the disturbance. 

It is clear, as pointed out by Mack (19771, that the position of tran- 

sition uust depend on the absolute size of the disturbance, and thus on the 

initial size of the disturbance as well as the growth rate of the unstable 

disturbance. If there were no disturbance at all, that is the initial size - 
were zero, the stability or instability of the flow would be irrelevant. 

The flow would remain laminar, and transition would not occur anywhere on 

the body unless, of course, the flow separated. On the other hand, if the 

initial disturbance were very large, say of the order of the mean flow 

speed, then transition would, presumably, occur very near the front of the 

body, perhaps in the immediate vicinity of the stagnation point or line. 

A rough estimate of the magnitude of the initial amplitude of the 

Tollmien-Schlichting waves at the beginning of the region of instability can 

be made if it is assmed that the "en" criterion is an approximately valid 

transition method and if one accepts the estimate of Klebanoff, Tidstron, 

and Sargent (1962) that, at the beginning of transition, the rms value of 

the perturbation velocity is about 1.5% of the free stream speed. Since the 
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initial proposal of the Yen" criterion by Smith (1956) and Van Ingen 

(19561, extensive studies of transition data have shown that n varies from 

about 2.5 to 10.0, depending on the test facility. Taking the disturbance 

amplitude at transition to be 0.015 of the free stream speed, and n to 

vary from 2.5 to 10.0, it follows that the amplitude of the disturbance at 

the beginning of the region of flow instability is in the range 10B3 to 10m6 

of the free stream speed. This suggests that a very weak coupling of free 

stream disturbances to Tollmien-Schlichting waves in the boundary layer may 

be extremely important in the initiation of the transition process. If the 

free stream disturbances have amplitudes of O(E), even disturbances in the 

boundary layer of O(s2) may play a role in initiating transition. 

In order to incorporate the influence of the flow environment in sta- 

bility prediction methods, and thereby provide a rational basis for these 

methods, it is necessary to be able to calculate the initial size of the 

disburbance caused by external, i.e. free stream, disturbances. There are 

four classes of free stream disturbances which may be responsible for the 

generation of the Tollmien-Schlichting waves which lead to transition 

(Obremski, Morkovin, and Landhal, 1969). They are: mean flow unsteadiness, 

free stream vorticity, sound, and entropy fluctuations. If the fluid were 

truly incompressible, only the unsteadiness of the mean flow and free stream 

vorticity could exist and initiate the transition process. In reality, 

sound waves are always present. Entropy fluctuations appear to occur only 

at high supersonic speeds. In a recent study, Harvey and Bobbitt (1981) 

have examined the anomolies between wind tunnel and flight transition mea- 

surements. 'Ihey state that the experimental results show"... the dominance 

of free-stream disturbance level on the transition process from beginning to 

end." Further, they conclude that there is a question of"... whether sound, 

unsteadiness, or spectral peaks is the most influential on boundary layer 

receptivity,..." Morkovin (1978) has argued that, in medium to low subsonic 

flows, sound waves can be modeled quite accurately by a time varying 

oscillation superimposed upon a steady mean flow, provided that the 

wavelength of the sound wave is much larger than the characteristic length 

scale of the body. For a sound wave impinging on the nose of a body this 

characteristic scale length would appear to be the radius of curvature of 

the body at the forward stagnation point. 
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Recent studies, (Salwen, Kelly, and Grosch, 1980; Grosch and Salwen, 

1980; Salwen and Grosch, 1981) have been addressed to the problem of calcu- 

lating the amplitudes of the discrete and continuum eigenfunctions of the 

linearized, parallel flow stability problem. The results of these studies 

can be summarized as follows: first, the proper inner products for ortho- 

gonality of these eigenfunctions were found; second, it was shown that the 

set of discrete and continuum eigenfunctions for both the temporal and spa- 

tial problems is complete; and third, a procedure for calculating the ampli- 

tudes of the discrete and continuum eigenfunctions was found. In order to 

calculate these amplitudes, the disturbance must be known, as a function of 

time, on a plane perpendicular to the boundary. 

In order for this procedure to be applied it is necessary for the dis- 

turbance to be small so that linearization is valid; that the parallel flow 

approximation be valid, at least approximately; and that the form of the 

disturbance be known throughout the boundary layer and free stream at one 

location on a two-dimensional body. Even if the disturbances are small, 
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this theory cannot be applied in the immediate vicinity of the leading edge 

of a body because the flow in that region is not even approximately 

parallel. A basic problem is to determine the flow within the boundary 

layer caused by disturbances propagating and being advected by the mean flow 

toward the front of a blunt body. 

The response of the boundary layer on a body to oscillations in the 

free stream has been the subject of a number of studies beginning in the 

early 1950's. Some representative examples are the work of More (1951), 

Lighthill (19541, Stuart (19551, Rott (1956), Lin (1956), Glauert (19561, 

Carrier and Di Prima (1957), Gibson (19571, Watson (19591, Lam and Rott 

(19601, Rott and Rosenzweig. (19601, Sarma (19641, Stuart (19661, and 

Ackerberg and Phillips (1972). Riley (1975) and Schlichting (1979, Chapter 

15) give comprehensive reviews of recent work in unsteady boundary layer 

theory. None of these authors have considered the application of their 

results to the boundary layer receptivity problem. 

These studies have considered either the unsteady flow in the vicinity 

of a stagnation point or on a flat plate. The flat plate problem presents 
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great difficulties because of the singularity of the boundary layer equa- 

tions at the leading edge of the plate. Carrier and Di Prima (1957) studied 

this problem within the framework of a linearized, Oseen approximation, to 

first order in the amplitude of the oscillation. They found that, far from 

the leading edge of the plate, the time dependent part of the flow is a 

Stokes shear wave. Ackerberg and Phillips (1972) studied the same problem 

using asymptotic, again to first order in the amplitude of the oscillation, 

and numerical techniques. They also found that, far downstream of the lead- 

ing edge, the flow develops into a nearly Blasius steady flow and a Stokes 

shear layer imbedded within the steady boundary layer. The most surprising, 

and unexpected, result of Ackerberg and Phillips is that "... most flow 

quantities approach their asymptotic values far downstream through damped 

oscillations." 

Grosch and Salwen have found a solution of the Navier-Stokes 

equations for an incompressible stagnation point flow whose magnitude 

oscillates in time about a constant, nonzero, value. (See Appen- 

dix Be) 'Ihe analytic solutions, to third order in the amplitude, obtained 

using inner and outer expansions, are in complete agreement with the results 

0.f numerical integrations. The mean flow is the steady stagnation point 

flow plus second, and higher, order flows driven by the Reynolds stress of 

the oscillatory components. The oscillatory flow is that of the fundamental 

and all of the higher harmonics of the fundamental. 

The mean flow is, to lowest order, independent of the oscillating flow. 

The structure of the oscillatory components of the flow depends on the fre- 

quency of oscillation, not on the distance from the stagnation point. As 

was expected, the oscillatory flow develops into a Stokes shear layer at 

high frequencies. The results of Carrier and Di Prima and Ackerberg and 

Phillips that the Stokes shear layer develops far downstream may be due to 

the use of the boundary layer equations in a region in which they are 

invalid. 

In any case, the flat plate with zero thickness and a "sharp" leading 

edge is a nonphysical model; all physical bodies have a blunt leading edge, 

at least if a continuum approximation can be applied to the flow past the 

body. 
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In this paper we examine one aspect of the boundary layer receptivity 
problem; that of the flow induced in the boundary layer on the forward por- 
tion of a blunt body by unsteadiness in the mean flow. As was mentioned 

above, this is also an approximate solution for the disturbances generated 
in the boundary layer by a long wavelength sound wave impinging normally on 

the front of a body in steady motion. Ihis work is an extension of our 

previous study of the flow in the neighborhood of a stagnation point (Grosch 

and Salwen, Appendix B). 

FORMUTATION 

Consider the flow past a blunt, two-dimensional body. The usual bound- 

ary layer coordinates are used: x is the distance along the surface of the 

body from the forward stagnation point and is the distance from the body 

along the normal to the body. A solution is to be found for g 10 of the 
time-dependent, two-dimensional boundary layer equations 

++ av = 0 , 
ax a”y 

k+u 
au 

%+v = 
au au a2u 

at ax a”y 

+u,, +u-, 

ii ax a72 

with the boundary conditions 

U&W = v(G,o,t) = 0, (3) 

u(G,"y,t> + U(x,t> as y + cD. (4) 

--Here, (u,v> are the components of the velocity in the x and y 

directions, U(G,t> is the component of the potential flow which is tan- 
gential to the body surface, and v is the kinematic viscosity. It will be 
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assumed that the potential flow is a temporally oscillating flow, super- 

imposed on a steady mean flow; specifically it is assumed that, 

U&t> = UoH(://a)[l + E cos at], (5) 

where TJ, is the magnitude of the mean potential flow, 

R is an appropriate length scale of the body, 

& is the dimensionless amplitude of the oscillating component, 

and, 

H is a dimensionless function, giving the variation along the body 

of the tangential component of the potential flow. 

It will be assumed that the body is symmetric and is at a zero angle of 

attack, so that H is of the form 

H(z/R) = ? a 
n=O 2n+l 

(G/2)2n+1, 

with the Caj) dimensionless constants. Specific examples will be 

considered below. 

METHOD OF SOLUTION 

Define dimensionless variables 

5 = ;/a, 

17 = (a,Re)1'2(y/2) 

T = aIUot/2, 

and parameters, a Reynolds number 

Re = UoR/V 

6 
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(9) 

(10) 
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and a Strouhal number, a dimensionless frequency, 

u =oal(alUo). 

Defining a stream function such that 

u = aqqay, v = -aly,/aG, 

$J = [(Uoa)/(a,Re)1'2] 4(c,n,r), 

equation (1) is satisfied identically and (2) is 

a34 -1 -+q 
an3 1 a29 -- = EuH(~) sin U? 

aTan 

- ai1H(5)H'(5 )[l + E cos UT I2 * 

The boundary conditions, (3) and (4) are 

at n = 0, 

(11) 

(12a,b) 

(13) 

(14) 

(15) 

and 

a’ + H(S )[ 1 
G 

+ 8 cos UT 1 as n + O". (16) 

The tangential component of potential velocity, H(c), is a power series in 

5. It is clear, from (14), that 4 must also be a power series in 5, 

with each coefficient a function of n, T, and the parameter s. Each of 

these coefficients will be expanded in a Fourier series in T, with each 

Fourier amplitude a function of 11 and the parameter s. Finally, each 

Fourier amplitude will be expanded in a power series in 8, with each 

coefficient of the power series a function of n. These functions of n 

are then found to be solutions of ordinary differential equations. 
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First, assme that 

$ (5 Jl ,‘c 1 = y [2(n + 1) - 6on] a2n+l 52n+1 F2n+l('l,r). 
n=O 

(17) 

Substituting (6) and (17) into (14) and equating the coefficients of 

successive powers of 5 on the left and right sides of equation (14), the 

partial differential equations for the {Fj(n,T>) are found. F1 satisfies 

a3F1 + F a2F1 _ 
an3 la+ 

- Q(r% d a2F1 = P(T-~ 
aTal ’ ’ 

a) ,s 3 (18) 

where 

PO ;c ,u > = EU sin UT, 

and 

Q(T ;E ,U ) =1+1,2+ 2E cos UT + 1 E2 cos 2UT. 
2 2 

(19a) 

(19b) 

Next, define the operators 

a3F. a2F. aF1 aF. a2F1 a2F 
D(Fj,Fl;j) : 2 + FIJ- (j + 1) -A+;-F.-- j (20) 

an3 an2 a17 an a$ J aTa 

and 

aF. aF. a2F. 
G(Fi,Fj) E -?A- 1 F.. 

an an an2 J 
(2 1) 
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Then, 

D(F3,Fl;3) = '1 P - Q, 
4 

D(Fg,Fl;5) = 1 P - (1 + 1 C5) Q + 8CgG(Fs,F3), 
6 2 

D(v,Fl;7) = '1 P - (1 + C7) Q + 9C7G(Fg,F3) + 15 C7G(F3,Fg), 
8 

D(Fg,F1;9) = '1 P - (1 1 1 + c +-c >Q+-C G(F7 > 
10 991 2 9r2 

[48 ,Fg 
5 991 

+ 112G(F3,F7)] + 18 C 
932 

G(F5,F5), 

D(Fll,F1;ll) = km P - (1+c +c )Q+C 
12 11,l 11,2 

11 1[30G(F3,Fg) 
, 

+ lOG(F ,F >] + Cl1 2 
9 3 

[28G(F5,F7) + 20G(F7,F5) 
, 

with 

C5 = a$/(alag), 

C, = a3ag/(qq), 

%,l = a34(aiag), Cg,2 = ag/(alag>, 

Cl l,, 1 = a3ag/(alallL Cl1,2 = a5a7/(alai1). 

, 

(2 2) 

(23) 

(24) 

(25) 

(26) 

(27a) 

(27b) 

(27c,d) 

(27e,f) 
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The boundary conditions for the (F2n+l} are 

F 2n+l(0,~) = (aF2n+l/an),,=o = 0 

and 

[2(n + 1) - 6on](aF2n+lan) + 1 + E cos UT, 

(28) 

(29) 

We have previously found the solution for FI up to, and including, 
terms in e3 (Grosch and Salwen, Appendix B). Although the 

boundary layer equations are being used in this study, it should be noted 

that 5 F1 61 ,T ) is a solution of the NavierStokes equations for oscillating 

stagnation point flow. It is easily seen that the form of the solution for 

each of the F 
2n+l 

is the same as that for F1. Therefore, we have for 

j = 1,3,...,11 

Fj(n,r) = E2mf ePmck[f j,2m,k(n) cos (kur) 
n=O 

+g j,2m,k(n) (30) 

It is quite straightforward, but somewhat tedious, to obtain the ordi- 

nary differential equations and boundary conditions for the f's and g's. 

These differential equations are given in Appendix A. 

One of the major problems associated with series solutions of this type 

is that of determining the radius of convergence. On the basis of the 
results from the study of oscillating stagnation point flow 

(Appendix B), it can be concluded that the power series in E is rapidly 

convergent for E: < 1, except perhaps at very low frequencies. If the fre- 

quency of oscillation is low, then a quasisteady approximation is quite 

accurate. Because of the rapid convergence of the series in e, for 8 

small, only the terms through e2 have been calculated. 
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A much more difficult problem is estimating the radius of convergence 

of the power series in 5. It appears that there are no general results for 

determining the radius of convergence of the steady Blasius series. Van 

Dyke (1957) has shown that the steady Blasius series for a parabolic 

cylinder diverges for x/r0 > 0.62, where r is the radius of curvature of 
0 

the parabola at the nose. The results given by Schlichting (1979) for the 

steady Blasius series for a sphere of radius r 
0 

suggest that this series 

is convergent up to at least x/r = v/2. It seems reasonable to assume that 
0 

the time dependent series solution given here is convergent for 5-z ?/a 2'1. 

RESULTS 

Numerical integration of the equations given in Appendix A yield the 

{f j,2n,k'gj,2nk" Substituting (30) and (17) into (13) and using (12) 

gives, for the velocity components (u,v>, 

2n+l O" 
u/u 0 = njo 

i 
[2(n + 1) - 6on] a2n+lS ' [E2mfin+l 2m 0 = UFO , , 

k=l 
E2m+k{f;n+l 2m k cos(kur) + &';n+l 2m k sin(kuT))] 3 9 , 3 

v/U = - (a,Re> 
0 

-1'2nyo 
= 

[2(n + 1) - 60n](2n + 1) a2n+lS2n 

; [E2mf +Y 
n=O 2n+1,2m,O k=l 

.2wk {f2n+l 2m k cos (kur) + 
, s 

+g 2n+1,2m,k sin (IaX))] . 
I 

(32) 

The velocity field depends on the body shape, the {aj) , the 
Reynolds number, Re, and the dimensionless frequency, U. It should be 
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noted that the effective Reynolds number and frequency depend, to some 

extent, on the body shape because the velocity scale is a1u 0’ 
see 

equations (8), (lo), (ll), and (13). It is clear from (31) that, as usual, 

the tangential component of the velocity, u, has no explicit dependence on 

the Reynolds number which only affects the scaling in the normal (n) 
direction. Again, as usual, the normal component, v, is proportional to 
Re-112 in addition to the scaled dependence of the normal coordinate. 

Through the terms in e2, 

2 
u/u =U u 

0 090 
(5 g-l > + E 2 

, 
o(5 g-l 1 + e[ uy;e ,?-I> cos UT + ui2;(E ,n > 

9 , 

X sin UT ] + E2[ uy; 
, 

CO.5 2UT + ui'i sin 2UT], 
, 

v/u = - (alRe)-1'2{vo o(E,~) + E2v2 o(E,n) + E[vL1i(5,n) cos UT 
0 , , , 

+ vi2; 2 (1) sin UT] + E: [v, 2(5,n) cos 2Ur + v. 2 (2).(E ,n 1 , , , 

sin BT]} 

with, 

uj o = i [2(n + 1) - Son] a2n+l S2n+1f~n+l,j,o(n), 
, n=O 

p m 
o,j 

i [2(n + 1) - 6on] a2n+l 
52n+l f, 

n=O 2n+l,o,j(n)' 

uy3 a ! [ 2(n + 1) - gonl a2n+l S2n+1g~n+l,o, Jo 
, n=O 

(33) 

(34) 

(354 

(35b) 

(35c) 
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vj o u f [2(n + 1) - 6on] (2n + 1) a2n+l C2nf Sn+l,j,o(n)' (35d) 
, n=O 

,W pL 5 1 [2(n + 1) - 
o,j n=O 

6on] (2n + 1) a 2n+l E2nf 2n+l,o,j(n)' (35e) 

J2) p1 5 1 [P(n + 1) - 
vi n=O 

don] (2n + 1) a2n+l 52ng 2n+l,o,jh)' (35f) 

The superscript (1) indicates the component of the velocity in the 

boundary layer which is in phase with the free stream oscillation, and the 

superscript (2) denotes the out of phase component. 

Figure 1 is a sketch of a typical blunt body and the coordinate system. 

The tangential and normal velocity components are u and v. The Cartesian 

coordinate system (x,y> is also shown in figure 1. The velocity compo- 

nents (G,v^>, parallel and perpendicular to the body axis are related to 

(u,v> by 

2 = u cos 8 - v sin 8, (36a) 

; = u sin 9 + v cos 0. (36b) 

There is an inherent difficulty in presenting the results of the calcu- 

lations in such a way as to make them intelligible. The reason for this 

difficulty is that the character of the flow, in the boundary layer varia- 

bles, changes drastically with position. In front of the body the flow is 

primarily directed towards the body, so u is very small and v dominates, 

in fact for n large, v = - U,. As the flow moves around the body v 
decreases and u increases so that near the midpoint u dominates. For 

this reason it seems most reasonable to present the results in the (x, Y) 
coordinate system. In particular, in terms of G, the component of the 

velocity is parallel to the axis of the body. Note, however, that as y is 

varied at fixed x both 5 and n vary. Presentation of the results in 

terms of G also facilitates comparison of the results of these calcula- 
tions with the experimental results of Kachanov, Kozlov, and Levchenko 
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(1978) although, as will be discussed below, the correspondence between the 

conditions of the experiment and of this calculation is not exact. 

Detailed calculations have been carried out for the flow past two types 

of bodies; elliptic and parabolic cylinders. 

3.1 Elliptic Cylinders 

On the surface of an elliptic cylinder the tangential component of the 

potential flow is 

H(c) = [l + (b/a)] sn(E;k), (37) 

with a the semi-major axis, b the semi-minor axis, 

the Jacobian elliptic function, and 

I;" = 1 - (b/al2 (38) 

The length scale is the semi-major axis, a. The coefficients in the power 

series expansion for H(S), the 1 a2n+l) are given in Table 1, (Cayley, 

1895). The radius of convergence of the Blasius series for an elliptic 

cylinder is, apparently, not known. However, the calculations appear to 

converge up to at least the midpoint on the body, that is to 

5 = E(k), (39 1 

where E is the complete elliptic integral of the second kind. The 

calculations were ended at this value of 5 because we are primarily 

interested in the flow on the nose. 

Calculations of the velocity field have been carried out for a nuuber 

of bodies with different slenderness ratios (a/b) and frequencies, u. 

Results are given for three bodies; a moderately thick ellipse with a/b = 

5; a thin ellipse, a/b = 10; and a very thin ellipse, a/b = 25, see 

Table 2. For each of these values of a/b calculations were carried out 

for a low frequency u = n/4, two intermediate frequencies, u=ll and 

3, and a high frequency, U = 6~. In all cases the Reynolds nunber was 
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taken to be 100.0. The results at other, particularly higher, Reynolds 

numbers appear to have the same form when distances are resealed to the 

appropriate boundary layer thickness. 

Contours of the zero order steady flow, co o, are shown in Figures 2, 
, 

3, and 4. The format of these figures, and all of the others.is the same. 

The body shape is plotted in the lower right hand corner of the figure and 

the flow is from left to right. For each body the semi-major axis is the 

same length. The body shape has not been distorted, however the region 

outside of the body has been stretched in order to show the details of the 

flow in the boundary layer. The coordinate system outside the body is the 

(5 ,n) system which is shown in Figure 1. The distance 5 = 1 corresponds 

to four of the major units of the scale shown on the edges of Figure 2 and 

all others. The distance n = 1, on the other hand, corresponds to one of 

these major units. Thus, for example, the coordinates of the point in the 

lower left hand corner of Figure 2 are 5 = 0 and n = 4, and those of the 

upper right hand corner of Figure 2 are 5 = E(m = 1.05050, and n = 

4.2. Note, however, that although the (5 ,n> coordinate system is used, 

these are contour plots of G, the velocity component parallel to axis of 

the ellipse. 

The results shown in Figures 2, 3, and 4 show that the zero order in 

E, mean flow has the same general features for bodies of different 

slenderness. Ahead of the body there is a boundary layer merging into the 

decelarating potential flow. Near the midpoint of the body the flow is 

nearly parallel to the body and the boundary layer flow merges into the 

tangential potential flow. In between there is a kind of "bubble" where 
A 
U is small. This extends somewhat in front of and above the forward 

090 
portion of the body. This region of small G occurs because both u 

O¶O OS0 
and v 

090 
are small and are at a substantial angle to the x axis. As the 

fluid flows around the nose of the body u increases but v decreases 

until near the middle of the body where it is O(ReD1'2). Therefore, on the 

forward portion of the body, but away from the axis, u is increasing with 

5 but is still not large and v is decreasing. Finally, as the body 

becomes more slender, the steady boundary layer tends to become thinner. 
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Figures 5 through 16 are contour plots of the second order steady flow, 

i; 2,o' Figures 5 to 8 show the results for an elliptic cylinder with 

a/b = 5 for a sequence of frequencies, u = s/4, 71, 3r, and 6~. 

Figures 9 to 12 show similar results for a/b = 10, while the results for 

a/b = 25 are given in Figures 13 to 16. Examination of these figures 

reveals some general patterns in the flow. 

In all cases ^u2 o is positive in the lower portion of the boundary 
, 

layer and negative in the upper portion. At low frequencies the maximum and 

minimum values of G 
290 

occur at the midpoint of the ellipse. As the 

frequency increases the maximum tends to shift towards the front of the body 

and the thickness of the regions of both positive and negative secondary 

mean'flow tend to decrease. However, as the ellipse becomes more slender 

I.e., a/b increases, the region of appreciable G 
2,o 

tends to be confined 

to the near midsection of the body. The absolute magnitude of this secon- 

dary flow also tends to decrease with increasing 6. Finally, at low 

frequencies the max G 2 o) is greater than Imin(u 
2 0)' 

, but at high fre- 
9 , 

quencies this is reversed. These results show that the Reynolds stress 

generated by the nonlinear interaction of the fundamental oscillatory flow 

with itself cause the formation of a weak, secondary, shear within the main 

steady boundary layer. At low frequency the maximum shear occurs near the 

middle of the boundary layer. As the frequency increases, the position of 

maximum secondary shear shifts towards the boundary. 

Contour plots of the amplitude and phase of Go 1, the fundamental 
3 

oscillation at frequency U, are given in Figures 17 through 28. As above, 

these show results for a/b = 5,'10, and 25 and u = a/4, TI, 3x, and 6~. 

The phase is, of course, arbitrary to within an additive constant. It has 
, 

been assumed that for both the fundamental and the first harmonic, the phase 

is zero at 5 = 0, n = 4. 

In all cases the contour maps of the amplitude of ^u 
0, 1, 

Figures 17a 

to 28a, bear an obvious generic relationship to the corresponding contour 

plots of so o for the same values of a/b. Of course, the structure of 
, 

the flow does change with the frequency of oscillation. Ihe amplitude of 

the oscillation decreases in front of the body and a region of reduced flow 
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is present above and, generally, in front of the nose of the body. As the 

oscillations move up onto the body, the amplitude grows. In all cases a 

peak in the amplitude distribution appears in the middle to lower part of 

the boundary layer at the midpoint of the ellipse. For a fixed value of 

a/b the location of this maximum of ^u 
130 

moves towards the boundary as the 

frequency increases, reflecting the development of a Stokes shear layer at 

high frequencies. If the frequency, u, is held fixed, the location of the 

maximum of G 
l,o 

also moves deeper into the boundary layer as a/b 

increases, i.e. as the body becomes more slender. This is shun in Table 3, 

in which the location of the maximum of ^u 
031 

is tabulated as a function 

U and a/b. 

The contour plots of the phase of Go 1 Figures 17b to 28b, are all 
, 

quite similar. The region of deceleration of the potential flow and the 

development of the boundary layer are obvious, as is the thinning of the 

boundary layer as it develops into a Stokes layer at high frequencies. Just 

back of the nose, the lines of constant phase tend to be parallel to the 

body with a noticeable thickening at low frequency near the midpoint of the 
ellipse. As o increases the region over which the phase shift occurs 

tends to thin. In all cases this region lies deeper in the boundary layer 

than the position of maximum ^u 
0,l' 

Independently of the value of a/b, 

the total phase shift appears, from the results given in Table 4, to be 

tending to IT/~ as u + 0~. 

Finally, Figures 29 through 40 are contour plots of the amplitude and 

phase of Go 2, the first harmonic of the free stream oscillation. Again 
, 

these results show very substantial internal consistency. 

The boundary layer in front of the body is readily apparent. 'Ihe 

region of nonzero 1 :0,21 decreases as the frequency increases at constant 

a/b and as the slenderness, a/b, increases at constant frequency. The 

amplitude of c o 2 has a maximum in the lower part of the boundary layer. 

For fixed a/b th; position of this maximum moves lower in the boundary layer 

and forward on the body as U increases. At constant frequency the height 

of the maximum remains nearly fixed while moving back toward the midpoint of 

the ellipse as a/b increases. 
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The phase shift of ", 2 is generally nearly constant over the region 

containing the maximum of IGo 21 and then goes negative in the outer 
, 

portion of the boundary layer. In this outer region the phase then 

increases towards zero. At low frequencies this outer phase shift occurs 

over a thin layer, but at higher frequencies it is fairly broad. 

The first harmonic of the free stream oscillation is always confined to 

the steady boundary layer and, as u increases, is confined to a thin 

Stokes layer adjacent to the body. As the fluid moves up onto the body, 

away from the nose, the amplitude increases but never becomes large. In 

fact, lGo 21 is never greater than about 5 x 10B2. The velocity 
3 

fluctuations due to harmonics of the free stream oscillation thus never 

exceed 5 x low2 e2. 

3.2 Parabolic Cylinders 

We next consider the flow past a parabolic cylinder 

9 = 4ax, (40) 

where a is the distance from the nose to the vertex. Choosing the length 

scale to be a, the tangential component of the potential flow is a power 

series in odd powers of 5 = x/a. The coefficients of this series are given 

in Table 5. The solution does not contain any geometric parameters, that 

is, apart from the scaling, is independent of a and is, therefore, a 

similarity solution for all parabolas. 

The radius of curvature at the nose of a parabola is 

rO = 2a. (41) 

Using Van Dyke's (1957) result that the Blasius series diverges for x/r0 

> 0.62, the solution given here is expected to converge only for 5 < 1.24. 

The coefficient al = l/4 for a parabolic cylinder, so that 

U = 4Cwa/v,>. Thus the "effective" frequency in the differential equa- 
tions for the f's and g's is four times the true frequency of oscilla- 

tion. Of course, a similar scaling applies to elliptic cylinders, but for 
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an ellipse al = (1 + b/a)-1, which is nearly unity for slender ellipses. 

Because of the factor of four in the value of o for a parabola, 

calculations were carried out for u = a/16, 7r/4, 37rl4, and 37~12, so 

that results would be readily comparable to those obtained for the ellipses. 

Contours of Go o, the O(1) mean flow past a parabolic cylinder are 
, 

given in Figure 41. The format of this, and all of the other figures 

showing the results of the calculations for a parabolic cylinder, is similar 

to those figures showing the results for elliptic cylinders. The body is 

shown in the lower right hand corner. Distances normal to the boundary are 

scaled so that one major unit of the scale on the border of the figure 

corresponds to one unit of n, the boundary layer coordinate. Thus the 

point in the lower left hand corner of the figures has the coordinates 

5 = 0.0, n = 6.0, and the top of the parabola at the right hand side of the 
figures has the coordinates 5 = 0.90, n = 0.0. 

A parabola is, in some ways, a rather peculiar blunt body in that it is 

not a closed body, so that there is no trailing edge, and that the thickness 

of the body is a monotonically increasing function of the distance from the 
stagnation point. Therefore, the farther back from the nose, the thicker is 

the region of potential flow which is substantially influenced by the body* 

This effect is apparent in Figure 41. There is a region of reduced flow in 

front of the parabola due to the deceleration of the potential flow and the 
formation of the boundary layer. This region extends far above the axis of 

the body because of the blocking effect of the parabola on the potential 
flow ahead of the body. In the region in front of the nose the contours of 

U 
090 

are nearly equally spaced. Just above the parabola, these contours 

tend to line up with the body and the distance between them becomes 

increasingly smaller as the flow moves onto the parabola and the quasi- 
parallel boundary layer flow develops. 

Contours of the steady, second order, streaming flow, G2 o, for 
40 =7~/4, JT, HIT, and 6x, are shown in Figures 42 through i-5. These 

plots show features which are similar to those seen in the contour plots of 

u2,0 for the flow past an ellipse, Figures 5 through 16. In both sets, 
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A 
u2,0 is positive in the lower portion of the boundary layer and negative in 

the upper part. The thickness of the secondary boundary layer decreases 

as the frequency increases and there is a slight tendency for the position 

of the relative maximum and minimum of f; 
230 

to shift forward towards the 

stagnation point as U increases. However, as U increases the maxI5 ol , 
decreases significantly. 

Figures 46 to 49 are contour plots of the amplitude and phase of Go l, 
, 

the fundamental oscillation in the free stream flow past the parabola. The 

contours of the amplitude of 6 0,l' 
show a general similarity to those of 

steady flow, G 0,o' However, as U increases a Stokes layer develops on 

the parabolic cylinder and moves forward towards the stagnation point. Away 

from the stagnation point, the contours of Go 1 are similar to those of 
h 
U 

0,l' 
for an ellipse if the surfaces are rotaied so as to be locally 

parallel. The local maximum of Go 1, seen in the flow past an ellipse is 
, 

not, however, seen for the flow past the parabola. The contour plots of the 

phase of Go 1, also show the development of a Stokes shear layer. The 

total magnittdes of the phase shift for c 0,l’ in Figures 46b through 49b 

are quite close to those for the corresponding cases for the elliptic 

cylinders. 

Contour plots of the amplitude and phase of Go 2, the first harmonic 
, 

of the oscillation in the free stream speed, are shown in Figures 50 to 53. 

The results shown in these figures illustrate the development of a second 

order Stokes shear layer within the steady boundary layer as the frequency 

increases. The maxl^uo 21 increases with 5, at all u, at least up to 
, , 

the point 5 = 0.9. It cannot be determined whether or not there is a 

localized maximum in the amplitude, as was found for the elliptic cylinders, 

or whether the amplitude reaches a plateau. The problem is that, in order 

to decide this question, the calculations would have to be extended sub- 

stantially beyond 5 = 0.9, but, as mentioned above, the series expansion 

probably is divergent for 5 > 1.24, and probably converges very slowly for 

5 close to 1.24. 
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DISCUSSION AND CONCLUSIONS 

Perhaps the most general conclusion which can be drawn from the results 

of this study is that in the region of the nose of a symmetric, two dimen- 

sional blunt body at zero angle of attack, the steady plus oscillating flow 

is very similar for a wide class of body shapes. This conclusioon has been 

shown to be true for elliptic cylinders with a/b < 25, and for the parabo- 

lic cylinder. Additional calculations, not reported here, were carried out 

for elliptic cylinders with values of a/b up to 100, with results which 

are very similar to those reported here. In all cases, the flow field in 

the nose region of a two-dimensional blunt body is generic to that of the 

flow in the neighborhood of the stagnation point on a plane wall. 

A general picture of the flow on the forward portion of a blunt body, 

due to a steady plus oscillating free stream, can be sketched. Forward of 

the body there is a region of decelerating potential flow which merges into 

the viscous stagnation point boundary layer. On the stagnation stream line 

the boundary layer thickness is 2.3811(Re)-1'2, with !2 the scale length 

of the body. If one considers G, the velocity component parallel to the 

body axis, there is a region of small G, above and ahead of the nose, 

where the velocity is reduced and is at a significant angle to the body 

axis. On the body itself, the boundary layer changes slowly with distance 

from the leading edge. lhe description, so far, applies to co o, the O(1) 
, 

steady flow. 

If one next turns to G 
091 

the fundamental oscillating component of 

the flow, the above description is, with some additions and amendations, 

valid. 'Ihese are due to the changes with frequency in the oscillating flow. 
T 

At low frequencies, wR/alUo < - , the flow is essentially quasi-steady; 
4 

that is, it is the steady flow scaled by the instantaneous free stream 

speed. As the frequency increases, the oscillating boundary layer develops 

into a Stokes shear layer. This change occurs along, at least, the entire 

forward portion of the body, independent of the position on the body. This 

is not completely obvious when G 
OS1 

is examined, but it is obvious if 

U 
0,l’ 

the component of the velocity locally parallel to the body is 
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studied. As shown in Appendix B, the development of a Stokes 

layer at high frequency occurs at, and in the neighborhood of, a stagnation 

point. 

This is in marked contrast to the results of Ackerberg and Phillips 

(19721, who concluded that the Stokes layer only develops far downstream of 

the leading edge of a flat plate. This may be due to the fact that there is 

a singularity at the leading edge of the (nonphysical) infinitely thin flat 

plate, or it may be due to the scaling assumptions of Ackerberg and 

Phillips, which, in effect, equate low frequencies with small distance from 

the leading edge and large distance from the leading edge with high frequep 

ties. In the calculations reported here, the distance from the stagnation 

point and the frequency are independent. 

The oscillations in the boundary layer, which exist at all frequencies 

and at all positions on a blunt body, could be interpreted as an oscillation 

in the steady boundary layer thickness. In the free stream, the mean (time 

averaged) speed is U 
0’ 

and the boundary layer thickness is conventionally 

defined as the height in the boundary layer, 6, where u(6) = 0.99 Uo. As 

U increases and decreases at fixed ‘I, because of the oscillation, the 

instantaneous value of 6 would appear to increase and decrease. It is 

quite easy to estimate the amplitude of the apparent oscillation in 6, if 

the velocity oscillations in the free stream are small. Let 

6 = B. + 6,(t), (42) 

with 6 o the time averaged boundary layer thickness, and 61 the oscil lat- 
ing component of the boundary layer thickness. By definition, 

<u(6) > = 0.09 a> = 0.99 uo, (43) 

where <> is a time average. Then, if s << 1, it is easy to see that, to 

lowest order in E, 

[ 

au 
6, = 030 e/(-l, 

I 

cos cot + e>, 
aY Y=6, 

(44) 
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where, as above, u is the 
O¶O 

O(1) steady boundary layer flow component 

parallel to the boundary, and 8 is the phase of u. 1, evaluated at 
, 

= Y 6,. 

In the neighborhood of the stagnation point on any blunt, two dimen- 

sional body, 6, scaled by !4, is 

60 = 2.38 (Re)'1'2, 

and 

(45) 

bU 
030 (---I, = 2.6 x 10-2. 

6; y=60 
(46) 

So that, in the vicinity of the stagnation point, 1611, scaled by R, is 

I%1 = 38.5 E (alRe)-1'2 (47) 

and 

1% PO a 16.2 c(al )-1'2. (48) 

At low frequencies the flow is very nearly quasi-steady, but at high 

frequencies, there can be some distortion of the velocity profile. If (3 

is large, u 
091 

is essentially constant outside of the Stokes layer which 

has a thickness of O(60u-1'2). Inside the layer, u. 1 can cause some 

distortion of u 
0,o' 

while outside the Stokes layer : 
0,l' 

only adds a 

constant, in n, time varying increment to uo,o' 

It may be useful, at this point, to give an idea of what is a low 

frequency and what is a high frequency. From equation (111, 

U = wal(alU,). 

If, by way of illustration, 11 = lm , al = 1, and Uo = 10 m /set, then 
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CT = af/5 (49) 

where f is the frequency in Hertz. Thus for 

the low frequency region, 

f s 514 Hertz. 

While, for high frequencies, 

CT 2 6x, f 2 30 Hertz. 

In summary, for this example, frequencies below 1 Hz are low frequencies, 

those greater than 30 Hz are high frequent ies, and the range of 1 to 30 Hz 

is the intermediate range of frequencies. 

Considering next the terms of O(c2>, there is both a second order 

steady streaming flow, 
u2,09 

and u 
0,2’ the first harmonic of the free 

stream oscillation. The steady streaming flow extends throughout the O( 1) 

boundary layer at low frequencies, but at high frequencies, it is largely, 

but not completely, confined to a Stokes layer. However, at high 

frequencies, there is a small portion of u2,0 which decays to zero in an 

outer layer, with a thickness of the same order as that of the O(1) mean 

boundary layer. 

The magnitude of this flow, Iu2 o , increases with 5, 
, I 

and for an 

elliptic cylinder has a maximum just in front of the midpoint of the 

ellipse. Such a maximum may, or may not, occur on a parabolic cylinder. 

Because of the limited range of convergence of the series expansion, the 

calculation cannot be reliably extended far enough to decide. 

The first harmonic, u. 2, has a structure which is partially similar 

to that of the secondary striaming flow, u2,0’ and partially, to the 
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fundamental, u. 1. At low frequencies it extends throughout the steady 
, 

boundary layer and at high frequencies is confined to a Stokes layer. It 

also develops a maximum amplitude some distance from the stagnation point. 

Both the first harmonic and the secondary streaming flow are present at 

all 5, even at the stagnation point. Away from the stagnation point they 

are somewhat modified, but have the same character as in the neighborhood of 

the stagnation point. In particular, the estimate (see Appendix B) 

that they are bounded by (E/o)2 seems to be valid over an appreciable 

range of 5, in fact, up to the midpoint on elliptic cylinders and over the 

range of a convergence of the series for flow past a parabolic cylinder. 

The only experiment with which the results of these calculations can, 

apparently, be compared is that of Kachanov, Kozlov, and l.evchenko (1978). 

They studied the flow past a flat plate with a nose consisting of two con- 

jugate ellipses with a semi-major axis, a = 50 mm and semi-minor axis, b = 

2 mm on the working side and a = 128 mm and b = 8 mm on the other side. 

Figure 54 shows the cross section of this body from the nose to a distance 

of 20 mm back from the nose. 

In Figure 2 of their paper, Kachanov et al. give contours of (in the 
h 

notation used here) u. o in the region from about 10 mm in front of the 
, 

nose to about 15 mm behind it, and from the axis of the body to 6 mm 

above. Figure 55 is an enlarged copy, supplied by Dr. Levchenko, of Figure 

2 of their paper. In this figure the contours are labeled with the speed in 
units of meters/second. 

It is obvious that there is a general, qualitative agreement between 

the theoretical results shown in Figures 2, 3, and 4 for the mean flow and 

the experimental results of Kachanov et al. shown in Figure 55. The major 

difference between the theoretical and experimental results is the closed 

contour labeled 6.0 in Figure 55; nothing like this is seen in the results 

of the calculations. The experimental result is rather curious. Either 

there is an absolute maximum within this contour, a "peak", or a local mini- 

mum lies within the contour, so that the contour is the "lip of a volcano." 
In either case the flow speed, as shown in Figure 55, is a maximum outside -- 
of the boundary layer. - 
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It is well known that, for a potential flow, the maximum velocity 

occurs on the boundary. The potential flow past an ellipse is a classic 

problem (Milne-Thomson, 1955). Calculations of the potential flow for an 

ellipse with a/b = 25 confirm that the maximum of Go o occurs on the 

boundary at the midpoint of the ellipse. Taking into'account the existence 

of the viscous boundary layer, the maximum speed should occur at the top of 

the boundary layer. How is it then possible to account for the existence of 

a maximum in the speed in what is, apparently, a region of potential flow? 

There seems to be three possibilities. The first, and most obvious, is 

experimental error. This does not appear to be likely because it would 

require systematic errors of the order of 10% to 15%. A second possibility 

is that the stagnation point is not on the axis of the body (see Figure 54). 

If, as seems likely, the stagnation point lies below the axis, then the flow 

must first move through a region of adverse pressure gradient until it gets 

around the nose. Then, for a short distance, the pressure gradient is 

favorable, and then falls rapidly to almost zero just behind the nose. It 

is possible that there is a local flow separation and reattachment, a 

separation bubble, just behind the nose of the upper ellipse. This would 

lift the boundary layer in this region and might account for the closed 

contour of G 
090 

in the results of Kachanov, Kozlov, and Levchenko. 'Ihe 

third possibility is that the free stream vorticity is not zero. If the 

free stream vorticity is non-zero, perhaps there is a shear in the free 

stream, then, depending on the distribution of free stream vorticity, a 

maximum of the speed could occur virtually anywhere outside of the boundary 

layer. 

There is, of course, a final possibility. These theoretical arguments 

and calculations may be wrong. It may be possible, for some reason, that a 

non-rotational potential flow has a maximum away from the boundaries. Or, 

it may be that there is a viscous effect, not included in these calcula- 

tions, which causes a maximum in the speed outside of the viscous boundary 

layer. 

Kachanov et al. also give experimental results for an oscillatory 

past this body. The oscillatory flow is caused by a vibrating ribbon above 

the axis of the plate and in front of it. As Kachanov et al. indicate, 
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the periodic vortices shed by this ribbon passed above the plate and only 

the tails of the vortices impinged on the nose of the plate. The results of 

the calculations given here are, at best, in rough qualitative agreement 

with the experimental results of Kachanov, Kozlov, and Levchenko. In part, 

their results show an absolute maximum in the amplitude of the oscillatory 

velocity in a small region just above the axis of the plate and just beyond 

the top of the steady boundary layer. They also show a rapid change in the 

oscillatory flow immediately below the region of maximum which was discussed 

above. As was discussed above, either the calculations reported here are in 

error or the experimental results reflect unnoticed effec.ts. In fact, from 

the results given in Figure 1 of Kachanov et al. it appears that the 

oscillation has a nonzero shear in the free stream. In any event, this 

issue requires clarification and would seem to require further work, both on 

the experimental and theoretical aspects of this problem. 

Finally, if the theoretical approach used here and the results are 

correct, it would seem to have value beyond this particular study. The 

general character of the flow, in the nose region of the blunt bodies con- 

sidered here, is very similar to that of the flow in the immediate neighbor 

hood of the stagnation point. As the flow moves around the nose of the 

body, no essentially new features appear. This suggests that the structure 

of the flow on the forward part of a blunt body due to more general classes 

of disturbances, such as vorticity waves, can be found by studying the flow 

due to these disturbances in the neighborhood of a stagnation point. It 

seems clear, at least for two dimensional flows, that a linearized, in E, 

theory is sufficiently accurate. The results given here show that, for any 

ellipse and for any parabola, the second order terms are bounded by (e/o)2 

for o 2 1. It also should be noted that the steady flow in the neighbors- 

hood of a general three-dimensional stagnation point is known. This should 

facilitate the theoretical study of disturbances impinging on a body in the 

region of a stagnation point. These approximations, flow near a stagnation 

point, and linearization in e, should be a considerable simplification for 

both analytical and numerical studies of boundary layer receptivity. 
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APPENDIX A 

DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS FOR THE F'S AND G'S 

The function Fl (n,r) is the solution of the oscillating stagnation 
point flow problem (Grosch & Salwen, Appendix B). The differen- 

tial equations and boundary conditions for the f's and g's are given 

there through terms s3 and will not be repeated here. 

The differential equations and boundary conditions for the f's and 

g's given here are those in the expansion of the IF.(n,r)) for 

J = 3,5,...,11 and s*, with nl 2. First, we define an operator L by 

+ (j)f;' o .] , , s 
(Al) 

where fl,o,o(o) is the O(1) function in Fl, and is the Hiemenz function, 

and primes denote differentiation with respect to n. Note that in (Al) the 

coefficients are j and j+l and that j is the first index of the f 

or g upon which L operates. Next we define a second operator S by 

s(m), g(n) ;a,B,r) E afg" - f3f'gl + Yf*lg, (A2) 

where f and g are any functions of '1, primes, again, denote differerr 

tiation and a, 6, and y are arbitrary constants. 

Then for the terms proportional to c3 we have, at O(1) 

Lf 3,0,0 = -1 (A3a) 
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f 3,o,o(o) = f;,o,o(0) = 0, 

f' 1 
3,0,0 + B as n + w 

At O(E) we have 

Lf 
3,091 - %,o,l = 

-2- S(f 
l,o,l,f3,0,0~ 

*1,4,3), 

1 
Lg3,0,1 + uf;,o,l = i 0 - s(g 1,0,1'f3,0,0' - 1,4,3), 

f 3,o,1(o) = f;,o,l(0) = g3,0,1(o) = P;,o,l(o) = 0, 

(A3b) 

(A3c) 

(A4a) 

(Akb) 

(A4c) 

(A4d) 

And at O(E2) 

1 
Lf 

3,2,0 = - T - S(f 1,2,0'~3,0,0' *1,4,3) (A5a) 

- k[S(f l,o,l'f3,0,1;1'4'3) + s%,o,l'g3,0,1~ %4,3)19 

f 3,2,o(o) = f;,2,0(o) = 0 (A5b) 

f;20*0 as rl+OD. (A5c) 
, 9 

and 

Lf 
1 

- 3,0,2 2cr ‘;,0,2 = - - S(fl,o,2’f3,0,0’ - ; 1,4,3) 

- 1[S(f l,o,l'f3,0,1' .1,4,3) - S(g1 (A6a) 2 , o 3 l,g3 , o 9 1;l,4,3)], 
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Lg3,0,2 + 2uf;,o,2 = - s(g 1,0,2'~3,0;0' *1,4,3) 

- QSCf 
2 l,o,l~g3,0,1' .1,4,3) + Sk1 o l,f3 o 1;1,4,3)], (A6b) , , , 9 

f 3,o,2(o) = f;,o,2(0) = g3,o,2m = g;,o,2(0) = 0, (ARC) 

f' 3,0,2+ ';,0,2 + ' as ' + =" (A6d) 

Next the f's and g's proportional to C5 satisfy, first to O(1) 

hf5,0,0 =-(1+lc> 
2 5 

- 8C5 S(f3,0,0s 29 s2 l 1 1) (A7 a) 

f5,0,0(0) = f$ o .(O) = 0 (A7b) , , 

f&O,0 + $ as rl+=. (A7c) 

Then at O(c) 

Lf5,0,1 - 'g;,o,l = -2(l + $ c5) - g(fl,o,l,f5,0,0;l,6,5) 

- 4c5 S(f3,0,0'f3,0,1;l,2,1) 

hg5,0,1 
1 + of;,o,l = -6~ - g(gl,o,l,f5,0,0;l,6,5) 

-4c5 S(f 3,o,o'g3,0,1' *1,2,1), 

f5,0,1(o) = f;,o,l(o) = g5,0,1(o) = g;,o,l(0) = 0, 

f4,0,1+ $ g;,o,1 + O as rl+-. 

The equations and boundary conditions at O(e2) are: 

Lf5,2,0 = - $ (1 + + c5) - S(f1,2,0,f5,0,0;1,6,5) - + 

x [se l,o,l'f5,o,1;l'6~5) + g(gl,o,l'g5,0,1' %6,5)] 

- 8 C5(s(f3,2,0f3,0,0;l.2.1) 

(A8a) 

(A8b) 

(ARC) 

(A8d) 
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+ 1 + 2 [S(f 3,0,1'f3,0,1i 11,1> 2' 2 Sk3 3 o , yg3 9 o , 1; 

x- ;,L+lj (A9a) 

f5,2,0 (0) = f; 2 o(O) = 0; f; 2 o + 0 as n + 00; 
9 9 , 9 

(A9b,c) 

Lf5,0,2 - 2og5,0,2 = -+ (1 + $ c5) - S(f1 o 2,f5 o o;1,6,5) 
, , , , 

- + [S(f l,o,l'f5,0,1' .1,6,5) - Sk1 o l'g5 o $A5)1 
9 , , , 

- 8C5(S(f3 ,o,0'~3,0,2' .1,2,1) + + [S(f3 o l,f3 o 1; $1,;) 
s , , 3 

- s(g 3 0 vg3 0 1; T' l L+l) , , , , 
(AlOa) 

Lg5,0,2 + 2af;,o,2 = - s(g 1,0,2'~5,0,0' *1,6',5) -$ [S(fl 9 o , l,g5 , o , 1; 

x 1,6,5) + s(q lf5 1;1,6,5)1 - 
,, o 99 o 8c5(s(f3 , o 3 o,g3 9 o , 2; 

(AlOb) 

f 5,o,2(o) = f;,o,2(0) = g5,o,2(o) = g;,o,2(o) = 0; 

x f;,o,2 + g;,o,2 -f 0 as n -f a. (AlOc,d) 
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The f's and g's which are proportional to C7 satisfy the 
equations and boundary conditions, at O(1) 

Lf 
7,o,o 

= 1 (1 + c7) - C7S(f3 o .,f5 o o;9,24,15), 
9 , , , 

f 7,o,o(O) = f+,o,o(0) = 0, f;,O,O -t $ as rl + m 

(Alla) 

(Allb,c) 

At O(E) the equations and boundary conditions are: 

Lf 
7,o,l - ug;,o,l = - 2(1 + c,) - s(fl o l,f7 o 1;L8,7) 

, , , , 

-C7[S(f3 o .'f5 o 1;9,24.15) + S(f, o l'f5 o o; 
3 , , 9 , , L I 

x 9,24,15)], (A12a) 

1 
Lg7,0,1 + af;,o,l = 8 cf - s(g 1,0,1~f7,0,0) .1,8,7) - 

x C7[S(f 3,0,0jg5,0,1S *9,24,15) + s(g3 o p5 o o; 
, , , , 

x 9,24,15)], 

f 7,o,1m = f;,o,lm) = g7,0,1(o) = g;,o,l(o) = 0, 

f' 
1 

7,0,1 + 8s g& + 0 as n + a. 

While at O(E2) we find 

Lf7,2,0 = 2 - 1~1 + c5) - ml 2 o,f7 o o;l,8,7) - '[s(fl,o 1' 
, 3 , , 2 , 

x f7 o 1;1,8,7) + S(g1 o l,g7 o l;1,8,7)] 
, , , - , 9 

(A12b) 

(A12c) 

(A12d,e) 
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- C,cS(f 3,2,0,~5,0,0' *9,24,15) + S(f3 o o'f5 2 o;9,24J5) 
, , , 9 

+ $S(f 3,0,1'f5,0,1' -9,24,15) + Sk3 o l&5 o 1; , , 9 , 

x 9,24,15m, (A13a) 

f 7,2,o(o) = f;,2,0(o) = 0, f;,2,0 + 0 as l-l + =- (A13b,c) 

Lf 
7,0,2 

- h - 2%,0,2 = 2 + c,) - S(f 1,0,2'~7,0,0' * 1,8,7) 

- '1 [ S(f 
2 l,o,l'f7,0,1' ;1,8,7) + Sk1 o lsg7 o 1; 

, , 9 , 

X 1,8,7)] - C7ES(f3 o .sf5 o 2;9t24s15) + S(f3 o 2f5 o o; 
, , , , ,, 99 

x 9,24,15) + ; [ se3 o l'f5 o 1;9,24,15) - Sk , , , , 3,0,vg5 ,0,1; 

x 9,24,15)]1, (A14a) 

Lg7 ,0,2 
+ 2af' 7,0,1 = - s(g 1,0,2~7,0,0' -1,8,7) - ; [S(fl o 1 ,g7 o 1; 

, , , , 

x 1,8,7) + S(gl o l,f7 o l&8,7) - C7(S(f3 o .A5 o 2; 
, , , , 3 , , 3 

x 9,24,15) + s(g3 o 2'f5 o ,;9,W5) + ;is(fg o Id35 o 1; 
, 9 , , , 9 , , 

x 9,24,15) + s(g3 o l,f5 o 1;9,24.191L (A14b) 
9 , , , 

f 7,o,2(o) = f;,o,2m) = g7,o,2(o) = g;,o,2(o) = 0' (A14c) 

f' 
7,0,2 + %,0,2 

+ 0 as rl+OD. (A14d) 
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For the terms proportional to 5' the O(1) equations and boundary 
conditions are: 

Lf9,0,0 = - (1 + cg 1 +;cg 2) - kc9 1 S(f , , , 3,0,0'f7,0,0; 

96,320,224) - 18Cg 2S(f5 o o;f5 o o;;,l,;,, 
, 9 9 , , 

(A15a) 

f g,o,o(O) = fb,o,o(0) = 0, fi,O,O + l/10 as rl + O". (A15b,c) 

The O(E) equations and boundary conditions are: 

Lf 
9,0,1 - %,o,l 

= -2(1 + c 9,l + c9,2) - S(f l,0,1~f9,0,0y 
.1,10,9> 

1 
- 10 Cg,l~S(f3,0,0~f7,0,1;96,320,224) + s(f3,0,1,f7,0,0; 

x 96,320,224)] - 18Cg 2S(f5 o ,,f5 o 1;1,2,1) (A16a) 
I , , , , 

1 
Lg9,0,1 + uf;,o,l = i-77 '3 - s(g l,o,l'f9,0,0' -L10,9)-10 91 L 

, 

x [s(f3 o o,g7 o 1;96,320,224) + s(g3 o lf7 o o;96,320,224)l 
, , , 3 ,, ,, 

- 18Cg 2S(f 5,0,0Bg5,0,1p *1,2,1), 
, 

(A16b) 

f g,o,1(o) = f;,o,l(o) = gg,o,lm) = g;,o,l(o) = 0, (A16~) 

f!i,o,l l 

1 

-mgil 01 +0 as ?I+". (A16d,e) 
, s 

The O(E2) equations and boundary conditions are: 

Lf 9,2,0 = -?l+C,, l 
i +; c9,2) - S(fl,2,0f9,0,0; 

35 



x 1,10,9)1 - + CS(fl,o,J~f9,0,y ' -1 10,9) + skl,o,l'gg,o,J; 

x w0,9)1 - +j Cg,l(S(f3,2,0f7,0,0' l 96,320,224) + S(f3,,/ 

-96,320,224) + $[sCf3,0,1,f7,0,L;96,320,224) 
x f7,2,o' 

+ s(g3,0,1 
.96,320,224)]) - 18Cg,2(s(f5,2,0~f5,0,0; ,g7,0,1' 

l 1 h + s(g x VW + +b(fg,o,lfg,o,li 9' ‘2 5,o,P5,0,1; 

; 1+1) 
(A17a) 

x -s 

g,2,o(o) = fb,2,0(0) = 0, f& + 0 as rl + OD* (Al7b,c) 
f 

-1,10,9> 
Lf 9,0,2 - 2%;,,,2 = -$(l + cg,l + $ c9,2) - S(fl,0,2sf9,0,0’ 

- $ [S(f 1,cl,1'f9,0,1' 
*1,10,9>] %10,9> - Sk1 o l’gg,o,J’ , 3 

- & '9 1 
*96,320,224) + S(f3,0,2, 

3 1 s(f3 o of7,0,2' , I 

xf 7 o o;96,320,224) + ~[s(f3,0,1,f7,0,1;96'320,224) 
, , 

- s(g *96,320,224)1) - 18Cg,2(S(f5,0,0'f5,0,2~ 
3,0,1'g7,0,1' 

x 1,2,1) + 2 L[S(f 5,0,1f5,0,1; P' "2 l 13 - Sk5 o 1,Qy 9 I 

x +,1,+ I], 
(A18a) 

Lg9,0,2 
+ 2af;,o,2 = - s(g l 1,10,9) 

1,*,2~f9,0,0~ 
-; [S(f l,o,l'g9,cJ,l; 
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x 1,10,9) + s(g1 o l,fg o l;L~o~g)l -&) cg 1 'S(f 
, 3 , , , 3,0,0' 

x g7 o 2;96,320,224) + S(g3 o 2,f7 o o;%3W24) + f 
, , s 9 , 9 

x [S(f 3,0,1'g7,0,1' -96,320,224) + S(g3 o l,f7 o l;96,320, 
, , , I 

x 22411) - 18C9,2~s~f5,0,0'%,o,2~1~2~1~ + S(f5,0,1'g5,0,1; 

x 1,2,1) , I (A18b) 

fg,o,2(0) = f;,o,,(o) = gg,o,2(o) = g;,o,2(o) = 0, (Al8~ > 

fb,o,2 -f gb,o,2 + 0 as n + 00. (A18d) 

Finally, for the terms proportional to cl1 the differential equations 

and boundary conditions are, at O(1): 

Lf ll,o,o = - (1 + Cl1 1 + Cl1 2) - Cl1 p(f3 o .,fg o o;10,40,30) 9 s , , , , , 

- C11,2S(f 5,0,0’f7,0,0’ -20,48,28) (Alga) 

f ll,o,o(o) = fil,o,o(o) = OS 

filoo+& as rl+OD. 
, , 

(A19b) 

(A19c) 

The O(E) differential equations and boundary conditions are: 

Lfll,o,l - ugii,O,i 
= -2Cl + Cl1 1 + Cl1 2) - S(fl o l,fll o o; 

, , , , , , 

x 1,12,11) - Cl1 JS(f3 o o,fg o l;lo,40,30) 
9 , s 3 , 

+ S(f 3,0,1Sf9,0,1' ~10,40,30)] - Cl1 2 [S(f5 o o,f7 o 1; 
, , , s , 
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x 20,48,28)] + S(f5 o l,f7 o o;20,48,28)], (A20a) , , , * 

Lg ll,o,l + of' 1 =-'y - 
ll,o,l 12 Sk l,o,l'fll,o,o' '1,12,11) 

-c11,1~s(f3,0,0'Pg,o,l~~~~~~~~~~ + s(gg,*,$fg,*,*; 

x 10,40,30)] - c 11,2~S(f5,0,0'g7,0,1~20,48,28) 

+ s(g 5,0,1'f7,0,0' .20,48,28)], (K!Ob) 

f ll,o,l(o~ = f;l,o,l(o) = ql,o,l(o) = g;l,o,l(o) = 0, (A2Oc) 

f' 1 
ll,o,l + TT' gil,*,l + 0 as rl + -. (A20d,e) 

And, lastly, the O(E2) equations and boundary conditions are: 

Lf 11,2,0 = - ; (1 + Cl1 1 + Cl1 2) - S(f1 * 2'fll * (+12,11) 
, , , 3 , , 

- $[S(f l,o,l'fll,o,l' -1,12,11) + s(g1 * yg11 * 1; , 9 , 9 

x 1,12,11)-j - Cl1 JS(f3 2 *,fg o *;10,40,30) + S(f, * *, 
, , , , , , , 

x fg 2 o;10,40,30) +; [S(f3 * l,fg * 1; 10,40,30) 
, , , , , , 

+ s(g 3,0,1'g9,0,1' ~10,40,30)])- C11,2(s(f5 2 *'f7 * *; 
, , 9 , 

x 20,48,28) + S(f, o *,f7 
, , 2 *;20,48,28) , , +; [S(f5 o 1, , 3 

Xf 7 * 1;20.48,28) + Sk5 * l&7 * 1' (A21a) 
, , , , 9 , 

.20,48,28)]), 

f 11,2,o(o) = f;l,2,0m = 03 
(A2 lb) 
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fi1,2,0 + O as n + a. (A22c) 

Lfll,o,2 - 2°g;2,0,2 = -+ (I + %,l + c11,2) - S(f l,o,2~fII,o,o; 

x I,l2,11) -$ [S(f l,o,l~fll,o,l ;1,12,111 - s(g l,o,l' 

x tsll,o,l;l,u,ll)J - cl1 1 s(f , 3,0,0'fg,o,2i~0,40,30) 

+ S(f 3,0,2,fg.,,o~~o,40,30) * + fq f ,9,1' 9**,1 ;io,40s30) 

- s&g ,o,l'g9,0,1; 10,40,30)] - cl1 2 s(f 
, 5 ,o,0'~7,0,2' 

x 20,48,28) + S(fg f ,0,2' 7,0,0' *20,48,28) + + fS$* 1' , 

Xf 
7,*,1 ;20,48,28) - S(g 5,o l'g7,oJ , ;20,48,28)] , (A22a) 

Lg1~,~,2 + 2afil,0 2 = ^ , S(g 1,0,2'f11,0,*; 1,12,11) 

- + ~S(fl,o,l~glr so, 1 ;1,12,111 + s$ * 1, 
, s 

x flL,o,l;l.12,1Z)J - Cl1 1 S(f , 1 3,0,0'gg,o,2~~o~40,30~ 

+ S(g 3,0,2'f9,0,0 ;10,40,30) + + [S(f3,* l,gg 
, 30, 

1;1o 40 30) 5 , 

+ S(g 3,0,1sf9,0,1 ;~0,40,30~1) - cl1 ,(m5 o .,g7 o 2; 
, , > , , 

x 20,48,28) + S$. ,o,2,f7,0,0;20,48,28) + + fs(f 5,0,1' 

x g7,* l;20,48,28) + 
s S(g s,o,l'f7,0,1; 20,48,28)]), (A22b) 
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f 11,o,2(o) = f;l,o,2(0) = g11,o,2(o) = Sil o 2(O) = OS (A22c) 9 , 

f’ 11,0,2 + gi1,0,2 + 0 as rl + O”. (A22d) 
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Table 1. Coefficients in the power' series expansion of the potential velo- 
city function, H(S), for flow past an elliptic cylinder. 

2n + 1 [l + (b/a)]-1a2n+l 
---- __- 

1 1 

3 -(l + k2)/3! 

5 (1 + 14k2 + k4>/5! 

7 - (1 + 135k2 + 135k4 + k6)/7! 

9 (1 + 1228$ + 5478k4 + 1228k6 + k*)/g! 

11 (1 + 11069$ + 165826k4 + 165826k6 + 11069k* + k")/ll! 

Table 2. Parameters of the elliptic cylinders for which results are given. 
_ _ ~-_- _ 

a/b k2 E(k) 

5 0.96 1.05050 

10 0.99 1.01599 

25 0.9984 1.00329 
--.---T._.~._ 
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Table 3. The position in the boundary layer of the maximum of Gl *. 
, 

U a/b = 5.0 10.0 25.0 

=I4 2.2 2.1 2.0 

lr 1.9 1.8 1.7 

3r 1.2 1.1 1.05 

61r 0.9 0.8 0.75 

Table 4. Total phase shift, in degrees, of 'c 
1,o' 

U a/b = 5.0 10.0 25.0 

s/4 11.2 11.9 12.0 

IT 30.0 30.0 30.0 

3a 42.0 40.0 40.0 

6r 42.0 42.0 40.0 
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Table. 5. Coefficients in the power series expansion of the potential 
velocity function, H(E), for flow past a parabolic 
cylinder. 

2n + 1 a2n 1 

1 l/4 

3 - 1/22.3! 

22/24.5! 

-1168/2?7! 

113536/2*.9! 

11 -17521024/210.11! 
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Figure I.. Coordinate system. 



Figure 2. Contours of the zero order steady flow, z. *. Contours from 0.0 
to 0.90 with an interval of 0.05. The body'is an ellipse with 
a/b - 5. 



Figure 3. Contours of the zero order steady flow, ';O,O. Contours from 0.0 
to 0.80 with an interval of 0.05. The body is an ellipse with 
a/b = 10. 



& t-4 . 

I 

pm I l-r 
I 
I 

I . 

Figure 4. Contours of the zero order steady flow, ^u6 0. Contours from 0.0 
to 0.74 with an interval of 0.04. The body'is till ellipse with 
a/b - 25. 
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Figure 5. Contours of the second order steady flow, 
-1.6 x lOi to 5.2 x 10-2 

U2,o' Contours from 
with an interval of 4.0 x 10W3. The 

labels are scaled by 104. The body isean ellipse with a/b = 5 
and'o - r/k. 



Figure 6. Contours of the second order steady flow, G2 0. Contours from 
-2.1 x 10-2 to 2.7 x IO* with an interval of 5.0 x 10-a. The 
labels are scaled by lo'+. The body is an ellipse with a/b - 5 
and u - n. 



Figure 7. Contours of the second order steady flow, ;2,0* Contours from 
-1.7 x lo'* to 1.2 x lO'%lth an interval of 1.0 x 10W3. The 
labels are scaled by 104. The body is au ellipse'with a/b = 5 
and a * 3~. 
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Figure 8. Contours of the second order steady flow, ^u2 0. Contours .from 
-1.0 x 10-2 to 6.0 x 1O-3 with an interval of'l.0 x 10W3. The 
label6 are scaled by 105. The body is au ellipse with a/b = 5 
and u - 6~. 



Figure 9. Contours of the second order steady flow, G2 0. Contour6 from 
-1.2 x 10-2 to 4.5 x 10-2 with an interval of'3.0 x 10B3. The 
labels are scaled by 104. The body is an ellipse with a/b - 10 
and u = a/4. 
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Figure 10. Contours of the second order steady flow, G2,,. COntOUr6 from 
-2.0.x IO'* to 2..4 x lo'* with an interv'al of 2.0 X 10W3. The 
labels are scaled by 104. The body is an ellipse with a/b - 10 
and Q - II* 
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Figure 11. Contours of the second order steady flow, 2, 0. Contour6 from 
-1.4 x 10-2 to 1.0 x 10-2 with an interval of'l.0 x 10W3. The 
label6 are scaled by 104. The body is an ellipse with a/b = 10 
and (I - 3n. 
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Figure 12. Contours of the second order steady flow, 2,,,. Contour6 from 
-$.O x 10'3to 4.8 x lo-"with an interval of' 8.0 x 10W4. The 
labels are scaled by 105. The body is 6n ellipse with a/b - 10 
and u - 6~. 



Figure 13. Contours of the second order steady flow, G2 0. Contours from 
-1.2 x 10-2 to 4.2 x m2 with an interval of'3.0 x 10W3. The 
label6 are scaled by l@. The body is an ellipse with .a/b - 25 
and u = IT/~. 
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Figure 14. Contours of the second order steady flow, 22 0B COntOurS frOUI 
-1.8 x 1O-2 to 2.2 x 10-2 with an interval of'2.0 x lo'*. The 
labels are scaled by 104. The body is an ellipse with a/b - 25 
and (I = 'II. 



Figure 15. Contours of the second order steady flow, 2, 0. Contour6 from 
-1.3 x 10-2 to 8.0 x 1O-3 with an interval of'l.0 x 10W3. The 
label6 are scaled by 104. The body is an ellipse with a/b - 25 
and u = 3n. 



Figure 16. Contour6 of the second order steady flow, ^u2 0. Contours from 
-7.7 x 10-3 to 4.2 x 10-3 with an interval of’7.0 x 10m4. The 
label6 are scaled by 105. The body is an ellipse with a/b - 25 
and u = 6n. 
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Figure 17a. Contours of the amplitude of 2, 1, the fundamental oscilla- 
tion. contours from 0.0 to 0.96’with an interval of O-06. 
The body is an ellipse with a/b = 5, and Q f t/4. 
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Figure 17b. Contours of the phase, in degrees, of Go,l, the fundamental 
o6cillation. Contours frun -11.2' to 0' &th an interval of 
0.7". The body is an ellipse with a/b - 5, and u = r/4. 
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Figure 18a. Contours of the amplitude of i. 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.96'with an interval of 0.06. The 
body is an ellipse with a/b = 5, and u = f* 
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Figure 18b. Contour6 of the phase, in degrees, of ^uo,l, the fundamental 
oscillatldn. Contours from -28.0” to 2.0’ with an interval of 
2. oO. The body is an ellipse with a/b - 5, and u - 5. 



Figure 19a. Contours of the amplitude of Go 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.96twith an interval of 0.06. The 
body is an ellipse with a/b = 5, and o = 3~. 
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Figure 19b. Contours of the phase, in degrees, of Go,l, the fundamental 
oscillation. Contours from -38.p to 0.0' with an interval of 
2.0°. The body is an ellipse with a/b = 5, and u * 3~. 



Figure 20a. Contours. of the amplitude of co 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.96'with an interval of 0.06. The 
body is an ellipse with a/b = 5, and u - 6~. 



Figure 20b. Contours of the phase, in degrees, of Go 1, the fundamental 
oscillation. Contours from -40.0' to 2.0' with an interval of 
2.0". The body is an ellipse with a/b = 5, and u = 6r. 



EL 
Figure 21a. Contours of the amplitude of co 1, the fundamental oscilla- 

tion. Contours from 0.0 to O&85-L-with an interval of 0.05. The 
body is an ellipse with a/b - 10, and u = a/4. 
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Figure 21b. Contours of the phase, in degrees, of Go 1, the fundamental 
oscillation. Contours from -11.2" to 0.7' with an InterPal of. 
0.7". The body is an ellipse with a/b = 10, and u - r/4. 



Figure 22a. Contours of the amplitude of Go 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.90'with an interval of 0.05. The 
body is an ellipse with a/b * 10, and u = f* 
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Figure 22b. Contours of the phase, in degrees, of Go 1, the fundamental 
oscillation. Contours from -28.0' to 2.0' with an interviil of 
2.0". The body is an ellipse with a/b = 10, and u = II. 



Figure 23a. Contours of the amplitude of ^uo 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.90'with an interval of 0.05. The 
body is an eilipse with a/b - 10, and u - 3n. 
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Figure 23b. Contours of the phase, in degrees, 6, 1, the fundamental 
oscillation. 
2. oO. 

Contours from -36.0" to i.0' with an interval of 
The body is an ellipse with a/b - 10, and u - 3~. 



Figure 24a. Contours of the amplitude of co 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.90'with an interval of 0.05. The 
body is an ellipse with a/b - 10, and u - 6~. 
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Figure 24b. Contours of the phase, in degrees, of Go 1, the fundamental 
oscillation. Contours from -40.0' to 2.0' with an interval of 
2.0°. The body is an ellipse with a/b - 10, and u = 6~. 
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Figure 25a. Contours of the amplitude of ^uo 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.80'with an interval of 0.05. The 
body is an ellipse with a/b - 25, and u - r/4. 



Figure 25b. Contours of the phase, in degrees, of co 1, the fundamental 
oscillation. Contours from -12.0’ to 0.0’ with an interval of 
0.8’. The body is an ellipse with a/b - 25, and u - r/4. 
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Figure 26a. Contours of the amplitude of so 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.85'with an interval of 0.05. The 
body is an ellipse with a/b - 25, and u - f. 
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Figure 26b. Contours of the phase, in degrees, of ^uo 1, the fundamental 
oscillation. Contours from -28.0’ to 2.0’ with tin interval of 
‘2. o”. The body is an ellipse with a/b = 25, and u - n. 
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Figure 27a. Contours of the amplitude of Go 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.85'with an interval of 0.05. The 
body is an ellipse with a/b * 25, and u =3n. 



Figure 27b. Contours of the phase, in degrees, of so 1, the fundamental 
oscillation. Contours from -36.0' to 4.0' with an interval df 
2.0°. The body is an ellipse with a/b = 25, and u * 3~. 
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Figure 28a. Contours of the amplitude of Go 1, the fundamental oscilla- 
tion. Contours from 0.0 to 0.80'with an interval of 0.05. The 
body is an ellipse with a/b = 25, and (I - 6n. 



Figure 28b. Contours of the phase, in degrees, of 6, 1, the fundamental 
oscillation. Contours from -38.0” to 2.0’ with an interval of 
2.0”. The body is an ellipse with a/b = 25, and u - 6~. 



Figure 29a. Contours of the amplitude of co 2, the first harmonic of the 
free stream oscillation. Contouis from 0.0 to 4.4 x 10e2 with 
an interval of 2.0 x 10e3 . The labels are scaled by 104. The 
body is an ellipse with a/b = 5, and u = r/4. 



Figure 29b. Contours of the phase, in degrees, of Go 2, the first s 
harmonic of the free stream oscillation. Contours from 
-200.0' to 140.0°. with &nYinterval of 20.0". The body is an 
ellipse with a/b - 5, and u = r/4. 



Figure 30a. Contours of the amplitude of Go,2, the first harmonic of the 
free stream oscillhtioa. Contours from 0.0 to 2.0 x 10m2 with 
an interval of 1.0 x 10W3. The labels are scaled by 10.'. The 
body is an ellipse with a/b = 5, and u = n. 
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Figure 30b. Contours of the phase, in degrees, of ^u 0,2’ the first 
harmonic of the free stream oscillation. Contours from 
-240.0” to 100.0” with an interval of 20.0”. The body is an 
ellipse with a/b = 5, and CI = ‘TI. 



Figure 31a. Contours of the amplitude of 20,2, the first harmonic pf the 

free stream oscillation. Contours from 0.0 to 4.6 x 10m3 with 
an interval of 2.0 x 10d4 . The labels are scaled by 10’. The 
body is an ellipse with a/b = 5, and u = 6~. 
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Figure 31b. Contours of the phase, in degrees, of Go,2, the first 
harmonic of the free stream oscillation. Contours from 
-260.0' to 80.0' with an interval of 20.0'. The body is an 
ellipse with a/b - 5, and u = 3~. 
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Figure 32a. Contours of the amplitude of Go,2, the first harmonic of the 
free stream oscillation. Contours from 0.0 to 4.6 x 10B3 with 
and interval of 2.0 x 10m4. The labels are scaled by 105. The 
body is an ellipse with a/b = 5, and u = 6r. 
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Figure 32b. Contours of the phase, in degrees, of Go,2, the first 
harmonic of the free stream oscillation. Contours from 
-280.0” to 60.0’ with an interval of 20.0’. The body is an 
ellipse with a/b - 5, and u - 6n. 



Figure 33a. Contours of the amplitude of uo,2, the first harmonic of the 

free stream oscillation. Contours from 0.0 to 4.0 x 10B2 with 
an interval of 2.0 x 10B3. The labels are scaled by 104. The 
body is an ellipse with a/b - 10, and u - n/4. 



Figure 33b. Contours of the phase, in degrees, of ^uo 2, the first , 
harmonic of the free stream oscillation. Contours from 
-200.0" to 140.0' with an interval of 20.0". The body is an 
ellipse with a/b - 10, and u - r/4. 
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Figure 34a. Contours of the amplitude of ^uo *, the first harmonic of the 
free stream oscillation. Contouis from 0.0 to 1.8 x 10m2 
with an interval of 1.0 x 10w3. The labels are scaled by 104. 
The body is an ellipse with a/b - 10, and u - a. 
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Figure 34b. Contours of the phase, in degrees, of ^u 
of the free stream oscillation. 

0,2’ the first harmonic 

with an interval of 20.0”. 
Contours from -240.0” to 100.0“ 

and Q = IT. 
The body is an ellipse with a/b = 10, 



Figure 35a. Contours of the amplitude of ^uo 2, the first harmonic of the 
free stream oscillation. Conto& from 0.0 to 7.2 x low3 with 
an interval of 4.0 x 10B4. The labels are scaled by 105. The 
body is en ellfpse with a/b = 10, and u = 3s. 
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Figure 35b. Contours of the phase, in degrees, of 2 
of thC free stream oscillation. 0,2’ the first harmonic 

with an interval of 2O:O”. 
Contours from -260.0” to 80.0” 

and Q = 3T. 
The body is an ellipse with a/b = 10, 



Figure 36a. Contours of the amplitude of so 2, the first harmonic of the 

free stream oscillation. Contouis from 0.0 to 4.0 x 10m3 with 
an interval of 2.0 X 1W4 . The labels are scaled by 10’. The 
body is an ellipse with a/b = 10, and o = 6~. 



\ 

.‘- I , ,’ ty ,’ r’ _*-- 
___*_____**----~-------~.~~~ 1 I \ \ 

I II I’ , I I,/’ 
_C- - 0-s -. \ ~____----- 4 ______-__*_---c_---.____ \- 

__--*-- ___________*----c*_-_cc_________ 
-_cc_--*c_ 

Figure 36b. Contours of the phase, in degrees, of ^u 
of the free stream oscillation. 

0,2’ the first harmonic 

with an interval of 20.0”. 
Contours from -280.0” to 60.0” 

and (I = 6n. 
The body is an ellipse with a/b = 10, 



Figure 37a. Contours of the amplitude of Go 2, the first harmonic of the 
free stream oscillation. Contou& from 0.0 to 3.6 x 10B2 with 
an interval of 2.0 x 10m3. The labels are scaled by 104. The 
body is an ellipse with a/b - 25, and u - r/4. 



Figure 37b. Contours of the phase, in degrees, of Go 2, the first harmonic 
of the free stream oscillation. Contours’from -200.0" to i40.0" 
with an interval of 20.0". The body is an ellipse with a/b = 25, 
and Q = a/4. 



Figure 38a. Contours of the amplitude of Go 2, the first harmonic of the 
free stream oscillation. Contou& from 0.0 to 1.6 x 10B2 with 
an interval of 1.0 x 10B3. The labels are scaled by 104. The 
body is an ellipse with a/b - 25, and u = n. 
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Figure 38b. Contours of the phase, in degrees, of co 2, the first ha.rmonic 

of the free stream oscillation. Contours’from -240.0” to 100.0” 
with an interval of 20.0”. The body is an ellipse with a/b = 25, 
and d =.T. 



Figure 39a. Contours of the amplitude of Go 2, the first harmonic of the 
free stream oscillation. Contouk from 0.0 to 6.4 x low3 with 
an interval of 4.0' x 10°4. The labels are scaled by 105. The 
body is an ellipse with a/b = 25, and u = 3n. 
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Figure 39b. Contours of the phase of Go 2, the first harmonic of the free 
stream oscillation. Contours ‘from -260.0” to 60.0’ with an 
interval of 20.0’. The body is an ellipse with. a/b - 25, and 
u - 3n. 
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Figure 40a. Contours of the amp.l.l.tude of Go 2, the first harmonic of the 
free stream oscillation. Contouk from 0.0 to 3.4 x 10N3 with 
an interval of 2.0 .x 10m4. The labels are scaled by 105. The 
body is an ellipse with a/b - 25, and o = 6n. 
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Figure 40b. Contours of the phase, in degrees, of 2, 2, the first harmonic 
of *the free stream oscillation. Contours’from :280.0” to 60.0” 
with an interval of 20.0”. The body is an ellipse with a/b * 25, 
and Q = 6m. 



Figure 41. Contours of the amplitude of Go 1, the fundamental oscilla- 

t ion of the flow past the parabola with u = a/16. Contours 
from 0.0 to 0.22 with an interval of 0.01. 



Figure. 42. Contours of the second order steady flow, G2 o, past the 

parabola with u = TI /16. Contours from -1.4 ‘x 10m3 to 1.05. x 
1O-2 with an interval of 7.0 X low4 . The labels are scaled by 
lo4 



Figure 43. Contours of the second order steady flow, G2 o, past the 
parabola with o = r/4. Contours from -3.6 ~'10'~ to 6.6 x 1O-3 
with an interval of 6.0 x 10n4. The labels are scaled by 105. 



Figure 44. Contours of the second order steady flow, G2 o, past the 
parabola with u = 3a/4. Contours from -3.0 k 10S3 to 2.4 x 
10’3 with an interval of 3.0 x 10B4. The labels are scaled by 
105. 
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Figure 45. Contours of the second order steady flow, G2 o, past the 

parabola with IJ = 3n/2. Contours from -2.0 L 10B3 to lb2 x 
10'3 with an interval of 2.0 x 10B4. The labels are scaled by 
105. 



Figure 46a. Contours of the amplitude of Go 1, the fundamental oscilla- 
tion of the flow past the parabola with u = n/16. Contours 
from 0.0 to 0.22 with an intetial of 0.01. 



Figure 46b. Contours of the phase, in degrees, of Go, 1, the fundamerita 1 
oscillation of the flow past the parabola with 0 = n/16. Contours 
from -8.5” to 0 .O” with an interval of 0.5”. 



Figure 47a. Contours of the amplitude of Go 1, the fundamental oscilla- 
tion of the flow past the parabola with u = n/4. Contours from 
0.0 to 0.23 with an interval of 0.01. 



Figure 47b.. Contours of the phase, in degrees, of Go 1, the fundamenta 1 
, 

oscillation of the flow past the parabola with (J = r/4. Contours 
from -24.0” to 1.0” with an interval of 1.0” f 



Figure 48a. Contodrs of the amplitude of Go 1, the fundamental oscilla- 
tion of the flow past the parabola with u - 3r/4. Contours 
from 0.0 to 0.22 with an interval of 0.01. 



Figure 48b. Contours of the phase, in degrees, of so 1, the fundamenta 1 
, 

oscillation of the flow past the parabola with Q = 3m/4. Contours 
from -34.0” to 2.0” with an interval of 2.0”. . . . . . . . . . . . . . . . . . . . . . 



Figure 49a. Contours of the amplitude of co,l, the fundamental osc.illa- 
tion of the flow past the parabola with (I = 3n/2. Contours 
from 0.0 to 0.22 with an interval of 0.01. 



Figure 49b. Contours of the phase, in degrees, of Go 1, the fundamental 

oscillation of the flow past the parabol; with o * 3~12. Contours 
from -38.0” to 2.0” with an interval of 2.0’. 



Figure 50a. Contours of the amplitude of Go 2, the first harmonic of the 
free stream oscillation of the flow past the parabola with 
u = n/16. Contours from 0.0 to 9.6 x 10B3 with an interval of 
6.0 x 10 -4. The labels are scaled by 105. 



Figure 50b. Contours of the phase, in degrees, of Go 2, of the first harmonic 
of the free stream oscillation df the fl;w past the parabola with U = 1~116, contours from -260.0” to 140.0” with an inte’rval of 
20.0”. 



Figure 51a. Contours of the amplitude of Go 2, the first harmonic of the 
free stream oscillation of the flow past the parabola with 
u = n/4. Contours from 0.0 to 4.6 x 10B3 with an interoaf of 
2.0 x 104. The labels are scaled by 105.' 



Figure 51b. Contours of the phase, in degrees, of Go 2, of the first harmonic 

of the free stream oscillation of the flb past the parabola 
with u = n/4, contours from to -240.0” to 100.0” with an interval 
of 20.0”. 



Figure 52a. Contours of the amplitude of Go 2, the first harmonic of the 
free stream oscillation of the flow past the parabola with 
u = 3r/4. Contours from 0.0 to 1.8 x low3 with an interval of 
1.0 x 10% The labels are scaled by 10'. 



Figure 52b. Contours of the phase, in degrees, of Go 2, of the first harmonic 
, 

of the free stream oscillation of the flow past the parabola 
with o = 37~/4, contours from -200.0” to 80.0“ with an interval of 
20.0”. 



Figure 53a. Contours of the amplitude of Go 2, the first harmonic of the 

free stream oscillation of the flow past the parabola with 
u = 3il/2. Contours from 0.0 to 9.6 x 10e4 with an interval of 
6.0 X 10-5. The labels are scaled by 106. 



Figure 53b. Contours of the phase, in degrees, of Go 2, of the first harmonic 
of the free stream oscillation of the flkw past the parabola 
with a = 3~/2, contours from -280.0” to 60.0” with an interval of 
20.0”. 



Figure 54. Cross-section of the nose of the body used in the experiment of 
Kachanov, p;ozlov, and Levchenko (1978). tie inch on the figure 
is equal to 1 nun on the body; see the scale on the figure. 
This figure shows the body from the nose to a distance of 5um1 
back. The dashed line in the figure is the line y - o for both 
the upper and lower ellipses. ‘lhe upper surface in this figure 
is that above which the measurements were made. 
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Figure 55. Experimental .results of Kachanov, 
Contours of Go o 

Kozlov, and Levchenko (1978). 
(in the notation of this paper) are shown. 

Contours are labeled with the speed in q /set and the dashed curve labeled 6 is the position of the top of the boundary 
layer. Distances are in millimeters. 
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Figure 1. The steady and secondary streaming flow components, f; o and’ 

fi,O’ as a function of 0, the dimensionless distance’from the 
boundary. The Strouhal number, u = n/4. The solid curves are 
the results of numerical integrations and the dashed curve is the 
low frequency approximation for f; o. 
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Figure 2. The O(s), fh 1, and gb,l, and O(s3), , fi,l and gi,l, 
amplitudes of the fundamental component of the oscillating flow 
as functions of n, the dimensionless distance from the bound- 
ary . The Strouhal number, 0 = n/4. The solid curves are the 
results of numerical integrations and the dashed curves are the 
low frequency approximations for fh 1 and gi 1. The low fre- 
quency approximation to fk 1, is s& close to the result of the , 
numerical integration that the two curves are virtually indistin- 
guishable on this figure. 
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flow as functions of n, the dimensionless distance from the 
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the results of numerical integrations and the dashed curve is the 
low frequency approximation to f; 2. , 
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Figure 6. The O(E) amplitudes of the fundamental component of the oscil- 
lating flow as a function of n, the dimensionless distance from 
the boundary. The Strouhal number, ci = 8s. The solid curves 
are the results of numerical integrations and the dashed curves 
are the high frequency approximations. The high frequency 
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Figure 7. The O(E~> amplitudes of the first harmonic of the oscillating 
flow as a function of rt, the dimensionless distance from the 
boundary. The Strouhal number, u = 8r. The solid curves are 
the results of numerical integration and the dashed curves are 
the high frequency approximations. 
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Figure 8. The O(c3) amplitudes of the fundamental component of the 
oscillating flow as a function of 0, the dimensionless distance 
from the boundary. The Strouhal number, u = 8n. The solid 
curves are the results of numerical integrations and the dashed 
curves are the high frequency approximations. 
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Figure 9. The O(c3) amplitudes of the second harmonic of the oscillating 
flow as a function of n, the dimensionless distance from the 
boundary. The Strouhal number, u = 8s. The solid curves are 
the results of numerical integrations and the dashed curves are 
the high frequency approximations. 
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ABSTRACT 

A solution of the Navier-Stokes equations is given for an incompressi- 

ble stagnation point flow whose magnitude oscillates in time about a COW 

stant, nonzero, value (an unsteady Hiemenz flow). Analytic approximations 

to the solution in the low and high frequency limits are given and compared 

to the results of numerical integrations. The application of these results 

to one aspect of the boundary layer receptivity problem is also discussed. 
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1. INTRODUCTION 

In this appendix we give a solution to the Navier-Stokes equations for 

an incompressible stagnation point flow whose magnitude oscillates in time 

about a constant, nonzero, value. Apart from the intrinsic interest of this 

problem, its solution is the first step in the solution of one aspect of the 

boundary layer receptivity problem, that is, the determination of the magni- 

tude and form of the disturbance introduced into the boundary layer on a 

body by a perturbation in the free stream. The solution of this problem 

would permit the calculation of the initial amplitudes of the Tollmien- 

Schlichting eigenmodes and continuum eigenfunctions in the boundary layer 

and give a rational foundation to transition prediction methods. 

We have recently given the solution to the boundary layer receptivity 

problem within the context of incompressible, linear stability theory for a 

parallel shear flow (Salwen, Kelly, and Grosch, 1980; Grosch & Salwen, 1980; 

Salwen and Grosch, 1981). There is, however, one aspect of the boundary 

layer receptivity problem to which our parallel flow solution is clearly not 

applicable. If we consider the flow near the forward stagnation point of a 

body, a linearized parallel flow theory cannot be valid because the flow is 

intrinsically nonlinear and nonparallel. Although we may be able to use the 

boundary layer equations away from the stagnation point, the full Navier- 

Stokes equations must be used in the immediate vicinity of the stagnation 

point. Once a solution of the NavierStokes equations for the perturbed 

stagnation point flow has been found, it is possible to extend this solution 

away from the stagnation point and around the nose of the body. This is, in 

fact, what is normally done for the steady flow past an object. The Blasius 
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series (Schlichting, 1979, pp. 168ff) is the extension around the nose of a 

blunt body of the Hiemenz solution (Schlichting, 1979, pp. 95ff) to the 

NaviepStokes equations near a stagnation point. In section 6, we discuss 

the analogous extension for our oscillating flow solution. 

We were stimulated to do this work by the papers of Glauert (1956) and 

Stuart (1966). There are a number of other relevant studies in this area 

including those of Lighthill (1954), Rott (1956), Lin (1956), Carrier and 

DiPrima (1957), Gibson (1957), Watson (1959), and Sarma (1964). Riley 

(1975) and Schlichting (1979, chapter 15) give comprehensive reviews of 

recent work in unsteady boundary layer theory. Lighthill (1978) has 

recently reviewed the current understanding of the phenomenon of acoustic 

streaming; i.e., the generation of a steady flow by the Reynold's stress 

due to an oscillating flow. 

2. EQUATIONS AND BOUNDARY CONDITIONS 

We consider the flow in the neighborhood of a stagnation point at 

(0 ,O) ona plane wall, with x the coordinate along the wall and y the 

coordinate perpendicular to the wall. We seek the solution (u(x,y,t), 

V(X,YN> of the two-dimensional NavierStokes equations which corresponds 

to the potential flow 

u = (uox/a)(l + E cos wt) 

v=- (uoy/ll)(l + e cos wt) 

(1) 

(2) 

149 



in the far field. Here, U and V are the'* and y-components of velocity 

of the potential flow, U. the velocity scale, R the length scale, e 

the dimensionless amplitude of the oscillation, and o the frequency of 

oscillation. Defining a stream function $(x,y,t) by 

(2a,b) 

and substituting into the incompressible Navier-Stokes equations we find, as 

usual, that J, is the solution of 

a 
(2-c + 

w a ?+- ax - 2 i&l VQ = vv2 (V%, 

with v the kinematic viscosity and 

v2 z 
a2 a2 
-+-. 
a2 ay;! 

We define dimensionless variables 

5 = x/R, rl = (y/!2)dR 
0’ 

T = tJot& 

a Reynolds number, 

(3) 

(4) 

(5a,b,c) 

R 
0 

= uoa./v (6a) 
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and a Strbuhal number 

u = wellJo. (6b) 

The use of separate velocity and length scales, U. and R, while 

correct, is somewhat arbitrary in that they appear only in the combination 

uOA 
in the potential flow. The scales which are intrinsic to this problem 

are the time scale of the base flow, T = a/u and 
0 0’ 

the frequency, w, 

the kinematic viscosity, v. We can define velocity and length scales in 

terms of T 
0 

and v, thereby setting the Reynolds number equal to unity. 

In any case, the dimensionless parameters which appear in the equations and 

boundary conditions are the oscillation amplitude, e, and the Strouhal 

number, CJ, and the results will be the same. We have chosen to use 

independent velocity and length scales, U 
0 

and R, because we intend to 

use the solution presented here as the basis for constructing a solution to 

the problem of an oscillating flow past a blunt object with length scale R. 

If we set, in analogy with the Hiemenz solution (Schlichting, 1979, pp. 

95ff), 

$ = (Uofi/dRo) 6 F(V), 

then equation (3) reduces to 

a[a2F + (L;- Fe- e] E 0, 
a17 aTan an a$ an3 

(7) 

(8) 
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which may be integrated to yield 

a2F + (ZWJ2 _ F a2F a3F -- - = G(S ,-c > . 
aTa an an2 a$ 

Because the left-hand side of equation (9) is independent of 5, it is 

clear that the "constant of integration", G, only depends on the 

dimensionless time, r. In order that the x and t dependence of the 

pressure in the far field agree with that of the potential flow, we must 

have 

(uo/@ G=:%+?!!!= 
x an x ax 

(Uo/E)(-cw sin UT) + (Uo/%j2 

x (1 + e cos WK 

Therefore, F(rl,T) is the solution of 

a2F + (aF 2 -) -F~-~ = 1 + E(2 cos UT - u sin UT) 

aTan aTI 

+ ;E2(l + cos 2UT) 

with the boundary conditions 

F(O,r) = 0, 

aF 
(g-$n=o = 0, 

(10) 

(11) 

(12a) 

(12b) 
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aF 
x + 1 + cos UT as l-l + =J. (12c) 

3. METHOD OF SOLUTION 

To solve equation (ll), we will expand F(n, T> in a Fourier series in 

the dimensionless time, T. The coefficients of the expansion are functions 

of n and the parameter e and each of these will be expanded in a power 

series in E. It is easy to see, from the form of (111, that the T- 

independent term in the Fourier series contains only even powers of E. 

Therefore, we look for a solution of the form 

F(n,T) = T {E2mf2m,o(n) + ! [f2m,k(n) 
e2m+k cos kur 

m=o k=l 

+ g2m,k(n) sin kur]}. (13) 

To find the equations obeyed by the f2m,k and g2m,k we substitute 

(13) into (111, collect the coefficients of like terms in the Fourier 

series, and set the coefficients of the successive powers of E equal to 

zero. We find, first, that f. o is the solution of 
, 

d3f 
OS0 + f 

d2fo o 
9 

dfo o 2 
- (-> + 1= 0 

dn3 OS0 d,,2 dn 
(14) 

with 
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f o,o(O) = fAlo(0) = 0, fA,o + 1 as n + OD. (lSa,b,c) 

As was expected , f. o, the r-independent, e-independent term in the 
, 

series, is the Hiemenz solution for the steady stagnation point flow. 

Next we define the operator L by 

d LE - +f 
dn3 030 (16) 

with primes denoting differentiation with respect to n. 'Ihen it can be 

shown that the equations and boundary conditions for the {f 
2m,k' and 

h 2m,k' 

are, for k L 1, 

Lf 
2m,k 

- ku g' 
2m,k = 

P 
2m,k' 

Lg 2m,k 
+ ko f' 

2m,k =Q 2m,k' 

f 2m,k(0) = g2m,k(0) = f'2m,k(0) = g'2m,k(0) = 0, 

f' +6 6 
2m,k m,o k,l' g'2m,k +O as n -+ 00, 

and, for m > o and k = 0, 

Lf 2m,o =R 2m,o' 

(17b) 

(17c) 

(17d) 

(18a) 



f 2m,o(0) = f'2m,o(0) = 0, (18b) 

f' 2m,o + 0 as n jco. (18~) 

The “pm k” (Q,, k}s are linear combinations of products of the 
, , 

If2r s" Ig2r s' and their derivatives, where s<k and 0 1. r % m or 
9 , 

s = k and r < m, and are given in Section 7. Therefore, these equations 

can be solved sequentially. The equations can be integrated nlanerically 

quite easily, although care must be taken to control roundoff errors. The 

results of these integrations are given and discussed in Section 5. 

4. LOW AND HIGH FREQUENCY APPROXIMATIONS 

4.1 The Low Frequency Limit 

As o+O, it is expected that the solution will approach a quasi- 

steady solution. It is straightforward to show that the quasi-steady 

solution, 

F(n ,f ) = (1 + E cos UT)1'2 f. o([l + c cos or]1'2n), 
, 

(19) 

satisfies equation (11) and the boundary conditions (12) to O(U). 

It is also easy to show that this quasi-steady solution is consistent 

with the expansion given in equation (13). If F, as given in (19), is 

expanded in a Taylor series in E, we find that 

O” ( n 
F= 1 ' 'OS ") 'n(n) n=o 2"n! 
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= ; (2 _ 6ko) p (;j2wk 'Ptik 
(n). 

cos koT, 
k=o m=o m!(m + k)! 

(20) 

with 
c 

s*(n) = fo,o('l), n = 0 

n-r-l 
= ,n,(n) o om + 7' C-1) 

(2n - 5 - 2)! [n- r(r + l)],rf(r) 

2 n-r-l r!(n-r)! 2 
0,0(n) 

9 r=o 

n3 1, (21) 

and 

f(r) = drfo,o 
0,o - 

. 
dnr 

Equating the coefficients of E in (21) to the corresponding 

coefficients of & in (13) we find that, to order u, 

1 
f 2m,O = 

S 
24m(,,)2 2m' . 

f 2m,k = 
1 

24m+2k-1 (m+k)!m! '2tik, 

(22) 

(2 3d 

(23b) 

(23~) 
g2m,k = 

0 
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Taking the u + 0 limit in the differential equations (17) and (18), for 

the {f 2m,k) and (g 2m,k" and substituting the low frequency approxima- 

tions (23), it can be shown by induction, after some lengthy but straight- 

forward calculations, that these approximations satisfy the differentional 

equations to O(o). Therefore, the quasi-steady solution is the same as the 

expansion in the low frequency limit. 

4.2 The High Frequency Limit 

In the high frequency limit, o + 00, it would be natural to look for 

approximate solutions for the (f 
2m,k' and Ig 2m,k' in the form of a power 

series expansion in 0-l. However, it is clear from the form of the 

differential equations, that this expansion would be non-uniform because the 

highest derivatives would be multiplied by the small parameter o-l and 

thus would vanish as u + =. 

We therefore rescale the equations, defining a new independent 

variable, an inner variable, 

z = (u/2)1'% = (w/2v)1'2y, (24) 

with the length scale (2v/w)1'2 3 that of Stokes's second problem 

(Schlichting, 1979; pg. 75 and Chapter 11). In this limit we assune that 

there is an inner expansion of the form, 

F=f o,ow + 9, E2m fi,,,(z) 

+ : y E2m+k[ F2m,k(z) cos kuT + i 2m,k(z) sin kar] 
m=o k=l 

(25) 
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It is easy to see that the differential equations for the {?2m k) 
, 

and G 2m,k 1 are just equations (17) and (18) with a transformation of 

variables from n to z. It can be inferred from the form of the equations 

that f2m,k and g2m,k are O((21U) 2m+k-l/2) in the high frequency limit. 

We then solve these equations, retaining only the highest order terms in an 

expansion in powers of (2/u). 

We find 

F 
l/2 

0,1(s) = (2/U) [Z + + em' (cog z - gin z) - +I, 

i. ,(z) , 
= (2/U)1’2 [+ e” (cog z + sin Z) - $1, 

(26a) 

(26b) 

a Stokes shear layer flow caused by the O(E) part of the far flow field. 

In the high frequency limit it is decoupled from the O(s"> steady outer 

'flow. This is, of course, a familiar result in time dependent boundary 

layer theory and has been derived and discussed by Carrier and DiPrima 

(19571, Stuart (19661, and Riley (1975), among others. 

If we let 6. o and 6 
, 

o 1 be the boundary layer thickness of the 
, 

steady flow and the Stokes shear layer flow, respectively, then, for 

u >> 1, 

6 0 l'& , 
o o = 2 (2/uV << 1. 

, 
(27) 

Next, we solve the equations for the O(E~) oscillatory flow and find 

that 
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; o,2(z) = (2/U)3'21E[e-fi ' (sin fi z + co9 CT z) - l] 
16 

-Z 
+ $ ze sin z1 

ii, 2 (z) = (2/U)3'2 iIz[LJ"- z (sin CZ z + co9 CT z) - l] 
, 16 

1 --z 
- - ze 4 cos zl 

(28a) 

(2 8b) 

Again we have a Stokes shear layer, decoupled from the steady flow and, for 

large u, confined to a thin layer imbedded within the steady boundary 

layer. 

Proceeding next to the O(c2) steady streaming flow component, we find 

that the most general solution which satisfies the boundary conditions at 

z = 0, is 

if, (2/u)3+-) [ 13 -22 = - 6z- e - 4eBZ o 
(3 cos z + 2 sin z) 

, 16 

- 4zevz sin z 1 + Dz2, (29) 

where D is an arbitrary constant. This secondary steady streaming flow is 

identical to that found by Stuart (1966) using the boundary layer equations. 

Stuart's small parameter, a, is the reciprocal of U and Stuart's exparr 

sion is in powers of a, while ours is in powers of (2/o). Therefore, 
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?2 0' 
with D = 0, is equal to l/2 of the x s given by Stuart (see Stuart, 

9 

1966; eq. 2.11). Our solution and Stuart's satisfy the boundary conditions 

at the wall but do not satisfy the outer boundary condition because 

(30) 

and does not vanish, as required by the far field boundary condition, for 

any value of D. This is explained by the fact (pointed out by Stuart) 

that there is an outer boundary layer, thick compared to the Stokes layer 

thickness, 6 
0,l' 

but thin compared to the scale of the body, within which 

this secondary steady streaming flow decays to zero. 

Since the o + QD limit is non-uniform and z is an inner variable, 

all of the f^'s and g's are inner solutions and could be expected to 

require matching to appropriate outer solutions. The functions :o 1' 9 

go 1s o 2, and z. 2s F however, are also outer solutions and, unlike 
, , , 

:2 0' 
do not require matching. 

, 

Outside of the Stokes layer, the interaction between the secondary 

streaming flow, zi.9 and the oscillatory potential flow, ^f' is 
, 0,l' 

unimportant. In the case studied by Stuart, the dominant non-linear 

interaction is that between 3 
290 

and itself. Since the velocity of this 

flow at the top of the Stokes layer is O(Uo/u), the corresponding Reynolds 

number is R = (Uo/u)(R/v) = Ro/u. From this, Stuart concluded that the 
S 

thickness of the outer layer is O(aR;1'2) = O(gR;1'2U1'2), which is 

larger than that of Stokes layer by a factor of the order of u. 
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For the case under consideration here,, the situation is completely 

changed by the existence of the large steady flow, f' 
O¶O 

with boundary 

layer thickness 6. o = O(U~'~ 6. l>. The dominant non-linear interaction 3 , 
of f2 o in the outer layer is with f' and, consequently, it falls off in a 3 
distance of the order of 6. o CinstZZ of ~3~‘~ 6 > 0,o - The appropriate 

, 
outer variable is therefore n = y/6 

0,o' 
If we express ? 1 and g 

031 
in terms of n, substitute them into 

9 
the differential equation for 

f2,0* and let u + a, it can be seen that the 
2 

outer solution, f 2,0' is the solution of 

LG f2,0 = O, 

with the outer boundary condition 

f12 o + 0 as 77 + m. 
, 

Using the asymptotic expansion for f. o, 
3 

2 
f 

030 
-n+A, 

(31) 

(32) 

(33) 

with A a constant, it can be shown that the general solution of (31) is 

f2,0 = co f10 ,(n) + Clh+n) + C2 h2(n) (34) , 

where, as n -+ =, 

h’, - (1 + B2) -.Y 2/2dy _ 8e-.B2/2 (35) 
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with 

8 =n+A. 

(36) 

(37) 

The outer boundary condition requires that C2 be set equal to zero. 

This leaves three arbitrary constants, C 
0’ 

C 
1' 

and D, in the inner and 

outer solutions so we can match the inner and outer solutions and their 

first two derivatives. Matching the inner limit of the outer solution and 

the outer limit of the inner solution shows that 

cO 
= O(o-l), Cl = ()(cS-~‘~ ), and D = O(oe2). (38a,b,c) 

The inner solution was obtained by expanding in powers of U-~'~ and 

retaining only the lowest order terms. Consistent use of this approximation 

requires that we set C 
1 and D to zero and match the first derivative. 

We find that 

C = -3/(4M). 
0 

where B = f" 
0,o (O)* 

The composite solution for Z a 
2,0 lS 

(39) 

i; 0 = (2/U)3'2 (;I [13 - Q2' - 4eeZ (3 co9 z + sin z) , 
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- 4zeeZ sin z 1 -"f:,. (l-l), 
4Bu ' 

(40) 

which satisfies the boundary conditions at z equal to zero as well as 

z + 00. The thickness of the inner layer of the steady streaming flow is 

6 0,l' while that of the outer layer is 6 
090 

which is much larger than 

6 
091 

for u+-. 

We have also calculated the high frequency approximations for the 

O(E3) functions, for f. 3, go 3, f2,1 and 
, , g2,1. These are given in 

Section 8. The components of the amplitude of the O(s3) portion of the 

second harmonic f 
093 

and g 
093 

are driven by the interaction of the O( El 

fundamental (f. l,go 1 
, , 

land the O(E~) first harmonic (f. 2,go 2). The 
, , 

inner expansions for f 
o,3 

and g 0,3' given in Section 8, are also outer 

expansions. 

This is not true for f2,1 and g2,l' the components of the amplitude 

of the O(e3> part of the fundamental. They are excited by the interaction 

of (f. 1’ go 1) , , 
with (f2 o) 

, as well as (f. l,go 1) with (f. 2,go 2). , , , , 
The inner expansion of the in-phase component, f2,19 satisfies the outer 

boundary condition, but inner expansion for the out-of-phase component, 

g 
2,l' 

does not. The outer expansion for g2,1 is the same as that for 

f2,0* The composite expansion for g2 1 is found in the same way as that 
, 

for f2,o and is given in Section 8. 

5. RESULTS 

We have numerically integrated the differential equations for the f's 

and g's with 2m + k < 3 over a wide range of values of U. Some typical 
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results at a moderately low frequency, u =51/4, are shown in Figures 

l- 4, where the solid curves show the results of the numerical integrations 

and the dashed curves are obtained from low frequency approximations for the 

f's given in section 4.1. The g's are identically zero in the low fre 

quency approximation. 

It can be seen from the results shown in these figures that at low 

frequencies there is no Stokes layer; the boundary layer thickness of the 

various components are generally equal to or greater than that of the steady 

flow component, fb o. The steady streaming component, f' is quite 
, 2,o' 

small compared to the mean flow, even for E = 1. 

At u = o the g's, the out-of-phase components, are identically 

zero. At small, but non-zero, frequencies the .low order (in S) in-phase 

components, the f's are larger than the g's. As the order increases, 

however, the magnitudes of the f's and g's tend to equalize and 

decrease. 

It is also apparent from an examination of Figures 1 - 4 that the low 

frequency approximations are reasonably accurate even at o = x/4. In fact, 

the difference between the numerical solution and the approximation for 

f 
091 

is so small that it is not apparent in Figure 2. Taking into account 

the fact that the higher order terms, which have the largest deviations from 

the low frequency approximations, have very small magnitudes, it is clear 

that the low frequency approximations, equation (19), is reasonably accu- 

rate, even for Strouhal numbers as large as n/4. 

Figures 5 - 9 show the f's and g's for 2m + k C 3 at a moderately 

high Strouhal number, o = SK, as obtained from the nlrmerical integrations 

(solid curves) and the asymptotic approximations (dashed curves). The top 

of the Stokes layer is at z E 4.6 and this corresponds to n = 6.5 CJ~'~. 
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Therefore, the top of the Stokes layer is at n n 1.3 for u = 8a. The 

secondary streaming flow (see Fig. 5) extends far beyond the Stokes layer. 

The variation of the fundamental component (see Fig. 6) is confined to the 

Stokes layer. The amplitude functions of the higher harmonics tend, like 

f;,O’ 
to extend beyond the Stokes layer because they are also driven by 

Reynolds stresses due to f. o. 
, 

The secondary steady streaming flow, f12 o, is considerably smaller 
, 

at high frequencies than at low frequencies. In addition, the nature of the 

secondary flow changes as u increases; at a small U, the net secondary 

flow is positive while, for large U, it is negative. As discussed by 

Stuart (1963j, it is known from experiments that this effect occurs in the 

steady streaming flow generated by a circular cylinder oscillating along a 

diameter. 

The tangential velocity component, u, aF is proportional to z, that 

is to the (f;, k; girn k). In Figure 10 we present some of the results of 
, , 

the numerical integrations; a plot of the variation of max 1 f;m k , ' 
and 

max b;, k , ' 
as functions of U. The maximum of f; o is 1.0 for all u 

, 
and the absolute maximum of f' 

031 
is about 1.069 at u = 17; the maxima of 

f' and f' 
030 091 

are not plotted in Figure 10. We can conclude, from the 

results shown in Figure 10, that the high frequency estimate, w I, 2m,k 

[g$m,kl) = O(U-~~-~+'), is quite good. 

6. DISCUSSION 

The applied far-field flow consist of a time-independent mean flow and 

a fundamental with a coswt time-variation. Non-linear interactions result 
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in the generation of components at all multiples of the fundamental fre 

quency and modifications of the mean flow and fundamental components, 

though, at moderate ~(511, the fundamental and first harmonic tend to 

dominate. 

At low frequencies, our results are well represented by a quasi-steady 

approximation (19), which has the same form as the steady stagnation-point 

flow except that the amplitude and scale vary with time. Somewhat surpris 

ingly, this approximation is quite good for a dimensionless frequency, o, 

as large as n/4. 

At high frequency, the viscous boundary layer corresponding to the 

oscillating components is largely, but not completely, confined to a Stokes 

layer of thickness (2/0)1'2 times that of the steady boundary layer. For 

these large values of u, the inner asymptotic approximations are solutions 

of differential equations which are independent of f and are, there- 
0, 0 

fore, decoupled from the mean flow. For a number of components, the inner 

expansions are also the correct outer expansions; these components are, 

therefore, totally decoupled from the mean flow to lowest order in u and 

are, in fact, identical to the corresponding solutions found by Stuart 

(1966) for a purely oscillatory flow past a body. 

Not all of the components are decoupled from the mean flow in the high 

frequency limit. The high frequency expansion is a non-uniform asymptotic 

expansion and thus, for certain components, in particular the steady second 

order flow, f' 2,o' an outer expansion, matched to the inner expansion, is 

needed for a uniformly valid approximation. The results given in Section 

4.2 show that such composite expansions can be found for U >> 1; they 
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satisfy, to lowest order in u, the differential equations and all of the 

boundary conditions. We believe, although we have not carried out the cal- 

culations, that this is also true for an expansion to any order in u. The 

results of the numerical integrations, shown in Figures 5-9 are consistent 

with this belief. We conclude that, both for this flow and for the oscilla- 

tory flow studied by Stuart (1966), there are second, and higher, order 

steady streaming flow components that do not extend to infinity but are 

confined to a layer adjacent to the solid boundary. This layer is much 

thicker than the Stokes layer but much thinner than the length scale of the 

body. 

There are other aspects of Stuart's solution which can be compared with 

ours. He used three parameters, a, 6, and R 
S 

in his solution, which 

are related to our Strouhal number, u, and Reynolds number, R 
0’ 

by: 

a = uO/(wP.) = U-l, 

f3 + v/(d2) = l/(oRo), 

R 
S 

= Uo2/(WV) = R /a. 
0 

Stuart used the boundary layer equations and an expansion for a -f o; we 

have used the NavierStokes equations and, in addition to the numerical 

solutions, an expansion for the high frequency limit, U + Q). It is clear 

that Stuart's expansion, and ours, are high frequency approximations. 

Stuart assumed that B was small and R s large in order to justify the use 

of the boundary layer equations. In the high frequency limit u + m, and, 

with R o fixed, a, i3, and R are all small. We do not need to make 
S 

any assumptions concerning the magnitude of R. or R because we used the 
S 
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Navier-Stokes equations. We can determine the f's and g's by numeri- 

cally integrating the ordinary differential equations; however, the quasi- 

steady solution for low frequencies and the high frequency expansion are 

useful analytic approximations. 

We have not attempted to determine the radius of convergence, in E, 

of the series for F(~,'c,E), equation (13). However, some observations can 

be made. We have found that f!!m,k and g2m,k are O(U -2m-k+1/2) for 

large U. Therefore, max (If;, k , ' 3 'g&k" the amplitude functions for 

are O(U -2m-k+l 
U, ). Thus the series for u is in terms of (E/U) 2m+k , 

for large u, and this suggests that it converges for &/a<1 and 

converges rapidly for E < 1. On the basis of the results presented in 

figure (10) we conclude that the high frequency bound on max (If'2m k , 
, ' 

Id 2m,kl' is valid at all frequencies and, therefore, that the series 

converges rapidly for E G 1. Of course the convergence will be slower at 

< low frequencies but we have shown that, for u - r/4, the quasi-steady 

solution is an accurate approximation. 

In the introduction we suggested that the solution to the problem of 

oscillating stagnation point flow was the first step in the solution of one 

aspect of the boundary layer receptivity problem. A few years ago, Morkovin 

(1978) reviewed the rather rudimentary state of knowledge of the dynamics of 

boundary layer receptivity. He identified four general classes of free 

stream disturbances which might generate Tollmien-Schlichting waves in the 

boundary layer. These are: vorticity fluctuations, sound, entropy 

disturbances, and unsteadiness in the mean flow. In the incompressible 

limit, there can be only vorticity fluctuations and unsteadiness. Morkovin 

argues, however, that a temporally oscillating incompressible flow is a 

168 



reasonably accurate approximation for a sound wave impinging normally on the 

nose of a body if the wavelength of the sound wave is much greater than the 

radius of curvature of the nose. 

The solution of the NaviePStokes equations given here is the solution, 

in the neighborhood of the stagnation point, of the receptivity problem for 

a simple unsteady flow. In order to interpret this solution in terms of a 

stability model it is necessary to extend it around the nose of the body 

into a region where the flow is, at least, quasi-parallel. If we can assume 

that the tangential component of the potential flow at the edge of the 

boundary is of the form U = UoH(c) (1 + E cosot), with H(c) having a power 

series expansion in 5, the distance along the body from the stagnation 

point, we can use an unsteady variant of the Blasius series to solve this 

problem. For the first term we use the full two-dimensional NavierStokes 

equations and the solution is that given here. For the subsequent terms, we 

use the boundary layer equations. We have carried out this calculation 

procedure up to and including the terms in cl1 and we are now applying it 

to bodies which are elliptic or parabolic cylinders. We hope to report the 

results of these calculations at a later date. 

This work was supported, in part, by grant NAG-l-96, from the National 

Aeronautics and Space Administration. 
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7. DERIVATION OF P2m k AND Q,, k MATRICES 
, , 

The expressions for '2m,k' Q2m,k' and R 2m,o in (17a), (17b), and (18a) 

are simplified by use of the notation 

M(f,g) = f"g - 2f'g' + fg". (7-l) 

In terms of M, 

P = 
ok -+ (86,l + 26k2 + (1 - 6kl) "j' [M(f 

r=l 
,fo k r) o,r )- 

- M(go r 'go k-r) 1' for k Ll, 
, , 

(7-z) 

' 4 '2m,k = -r 
1 

m-l m k-l 
1 M(f 2(m-s),o'f2s,o )+(1-d 

kl) s=. .c, Jl = 

x LMcf2g r'f2(m-s) k-r) - M(g2s rsg2(m-s), k-r) , , , 

m-l m-l-s 
+2c c [M(f f ) + M(g 

s=o s’=o 2s,k+m-s-s" 2s',m-s-s' 2s,k+m-s-s" 

g2s,m-s-s' )I I 
for m 1 1, k 1 1, (7-3) 

k-l 
Q ok 2~6~~ - (1 - 6kl) 1 M(fo r,go k-r) 

r=l , , I 
for k 11, (7-4) 
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1 2mj1 M(f 
m k-l 

Q2m,k = -T s=o 2(m-sjBg2s,k) + (' - 'kl) sio rLl 

m-l m-l-s 
x bf(f 2s,r'g2(m-s),k-r > + c c 

s=o s'=o 
bf(f2s m-s-s' , 

x g 2s',k+m-s-s" - MCf2st k+m-s-s”g2s’,m-s-s1)1 9 

for m > z 1, k - 1, 

and 

m-l 

R2m,o = -+ 26ml + 2(1 - 6m1) 1 M(f2s o,f2(m-s) o) 
s=l , , 

m-l m-l-s 
+ 1 C [“(f2s,m-s-~1~f28’,m-s-s’) + M(g2s,m-s-s', 

s=o s'=o 

x g2p ,m-s-s’ >I > for m-l. 

Here, 6.. 1J 
is the Kronecker 6 symbol. 

(7-5) 

(7-e) 
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8. HIGH FREQUENCY APPROXIMATIONS TO THE O(E~) PUNCTIONS 

The approximations to ? 
093 

and g 
093 

for 0 -f m are: 

El 
S/2 

o,3(2) = (2/o) {[9 - 8fi + 3 (2 + I)] + eeZ [(CT 

-6 + 42 - 4z2) cos z + (6 - fi- 4z2) sin z I 

-fiZ 
+ e (4 + fi- 82) cos fiz - (4 + 20) sin fiz] 

-Clz 
-J3(fi+l) e (cos 43~ - sin C%z) + (5fi - 7) 

-(E+ ')' [cos (fi+ 1) z - sin (2 + l>z]}/128, x e 

S/2 
) ,(z) = (2/o) { 
, 

b - 8/T + 43 (fi + I)] + eeZ [(E 

3 
-6 4zL) cos z + (fi - 6+4z- 4z2) sin z 1 

+ ewn"[(4 + fi) cos fiz + (4 + 2fi- 82) sin CZ] 

- Js(Jz + 1) eefiz( cos Ciz + sin Cz) + (5E- 7) 

x e-(fi + l)z 
[cos (fi + 1)z + sin (fi+ l)z]} /128. 

(8-1) 

(8-Z) 
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The approximation to F, 1 for CJ + * is: 
, 

F2 ,(z) 
S/2 

= (2/a) {(34!+33fi)/1920 + e-Z[(6dZ-213)/960 
9 

+ ( (5z/64) (z-1)/64) cos z + ((93 + lSfiI/240-10~ 

x (z + 1)/64) sin z] + evfiz[(7fl- 2 + 42) cos J-z 

- (7m+ 2) sin fiz]/64 + (13/160)e-2z + e - VT+l)z 

[(E-5) cos(fi- ljz - <fi+ 5) sin (fi- 1)~]/384 

+ eD3' cos z/320). 

The composite approximation to 2 
291 

for Q * O" is: 

iz2 l(Z) = (2/u) 5'2{ - ( 1513 + 125fi)/1920 + ewZ[(558- 45m/960 
, 

+ ((32 M-d/64) cos z + ((177 + 45fi)/960 + 

X ~(31 + 9z)/64) sin z] + e -fiz[(7E+ 2) cos Jzz 

+ (7E- 2 + 42) sin fiz]/64 + e-2Z[(13/80 + z/16)] 

(B-3) 
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with 

-(fi + 1) + e z[ (5fi) cos<fi - l)z - (5 - 4% 

x sin Cfi - 1)~]/384 + -3z e sin z/320) 

2 

+ (2/a) 3f' 01)/(8~), 
090 

B=f” . 0,0(O) 

(8-4) 

(8-5) 
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Figure 1. The steady and secondary streaming flow components, f’ 

f1,0’ 
as a function of n, the dimensionless distancz’ P 

and 
rom the 

boundary. The Strouhal number, u = n/4. l%e solid curves are 
the results of numerical integrations and the dashed- curve is the 
low frequency approximation for fs o. 
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Figure 2. The O(E), f; 1, and g; ‘1, and O(e3), fi 1 and g!2 1, 

amplitudesof ;he fundamenlal component of the’oecillatini flow 
as functions of n, the dimensionless distance from the bound- 
ary . The Strouhal number, ,u = m/4. The solid curves are the 
results of numerical integrations and the dashed curves are the 
low frequency approximations for f; l and gi 1. The low fre- 
quency approximation to f; l, is e& close to the result of the , 
numerical integration that ‘the two curves are virtually indistin- 
guishable on this figure. 
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Figure 3. The O(s2) amplitudes of the first harmonic of the oscillating 
flow as functions of Il, the dimensionless distance from the 
boundary. The Strouhal number, u = s/4. The solid curves are 
the results of nmerical integrations and the dashed curve is the 
low frequency approximation to f: 2. , 
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The O(s3) amplitudes of the second harmonic of the oscillating 
flow as functions of 11, the dimensionless distance from the 
boundary. The Strouhal number, u = a/4. The solid curves are 
the results of numerical integrations and the dashed curve is the 
low frequency approximation to ‘fh 3. 
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Figure 5. The steady and secondary streaming flow components, f: o and 
fi o, as a function of Tl, the dimensionless distance km the 

bokdary . The Strouhal number, u = 8r. The solid curves are 
the results of numerical integrations and the dashed curve is the 
high frequency approximation to fi o. , 
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Figure 6. The O(E) amplitudes of the fundamental component of the oscil- 
lating flow as a function of 0, the dimensionless distance from 
the boundary. The Strouhal number, u = 8r. The solid curves 
are the results of numerical integrations and the dashed curves 
are the high frequency approximations. The high frequency 
approximation to f; 1 is so close to the result of the numerical 

integration that the’ two curves are virtually indistinguishable 
on this figure. 
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Figure 7. The O(E*) amplitudes of the first harmonic of the oscillating 
flow as a function of ‘I, the dimensionless distance from the 
boundary. The Strouhal number, u = 8~. The solid curves are 
the results of numerical integration and the dashed curves are 
the high frequency approximations. 
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Figure 8. The O(s3) amplitudes of the fundamental component of the 
oscillating flow as a function of 0, the dimensionless distance 
from the boundary. The Strouhal number, u = 8~. The solid 
curves are the results of numerical integrations and the dashed 
curves are the high frequency approximations. 
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Figure 9. The O(tz3) amplitudes of the second harmonic of the oscillating 
flow as a function of rl, the dimensionless distance from the 
boundary. The Strouhal number, u = 8s. The solid curves are 
the results of numerical integrations and the dashed curves are 
the high frequency approximations. 
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